【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N* .
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.
【答案】
(1)解:∵S2=4,an+1=2Sn+1,n∈N*.
∴a1+a2=4,a2=2S1+1=2a1+1,
解得a1=1,a2=3,
當(dāng)n≥2時(shí),an+1=2Sn+1,an=2Sn﹣1+1,
兩式相減得an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即an+1=3an,當(dāng)n=1時(shí),a1=1,a2=3,
滿足an+1=3an,
∴ =3,則數(shù)列{an}是公比q=3的等比數(shù)列,
則通項(xiàng)公式an=3n﹣1.
(2)解:an﹣n﹣2=3n﹣1﹣n﹣2,
設(shè)bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,
則b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,
當(dāng)n≥3時(shí),3n﹣1﹣n﹣2>0,
則bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,
此時(shí)數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和Tn=3+ ﹣ = ,
則Tn= = .
【解析】(1)根據(jù)條件建立方程組關(guān)系,求出首項(xiàng),利用數(shù)列的遞推關(guān)系證明數(shù)列{an}是公比q=3的等比數(shù)列,即可求通項(xiàng)公式an;(2)討論n的取值,利用分組法將數(shù)列轉(zhuǎn)化為等比數(shù)列和等差數(shù)列即可求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則( )
A.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
B.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
C.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,為測(cè)一樹(shù)的高度,在地面上選取A、B兩點(diǎn),從A、B兩點(diǎn)分別測(cè)得樹(shù)尖的仰角為30°、45°,且A、B兩點(diǎn)之間的距離為60m,則樹(shù)的高度為( )
A.(30+30 ) m
B.(30+15 ) m??
C.(15+30 ) m
D.(15+15 ) m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程(m2﹣2m﹣3)x+(2m2+m﹣1)y+5﹣2m=0(m∈R).
(1)求方程表示一條直線的條件;
(2)當(dāng)m為何值時(shí),方程表示的直線與x軸垂直;
(3)若方程表示的直線在兩坐標(biāo)軸上的截距相等,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)且 =λ ,若 ≥ ,則λ的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中真命題為( )
A.過(guò)點(diǎn)P(x0 , y0)的直線都可表示為y﹣y0=k(x﹣x0)
B.過(guò)兩點(diǎn)(x1 , y1),(x2 , y2)的直線都可表示為(x﹣x1)(y2﹣y1)=(y﹣y1)(x2﹣x1)
C.過(guò)點(diǎn)(0,b)的所有直線都可表示為y=kx+b
D.不過(guò)原點(diǎn)的所有直線都可表示為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng) ,求f(x)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com