9.下列各數(shù)中,最小的數(shù)是( 。
A.75B.11111(2)C.210(6)D.85(9)

分析 欲找四個(gè)中最小的數(shù),先將它們分別化成十進(jìn)制數(shù),后再比較它們的大小即可.

解答 解:對(duì)于B,11111(2)=24+23+22+21+20=31.
對(duì)于C,210(6)=2×62+1×6=78;
對(duì)于D,85(9)=8×9+5=77;
故11111(2)最小,
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是算法的概念,由n進(jìn)制轉(zhuǎn)化為十進(jìn)制的方法,我們只要依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,即可得到結(jié)果,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)字“2016”中,各位數(shù)字相加和為9,稱該數(shù)為“長(zhǎng)久四位數(shù)”,則用數(shù)字0,1,2,3,4,5,6組成的無重復(fù)數(shù)字且大于2016的“長(zhǎng)久四位數(shù)”有(  )個(gè).
A.39B.40C.41D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2$\sqrt{2}$sin($θ+\frac{π}{4}$),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ=$\frac{π}{4}$+φ(φ∈[0,π])與曲線C1分別交異于極點(diǎn)O的兩點(diǎn)A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長(zhǎng);
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{m}$=(2sinA,1),$\overrightarrow{n}$=(sinA+$\sqrt{3}$cosA,-3),$\overrightarrow{m}$⊥$\overrightarrow{n}$,其中A是△ABC的內(nèi)角.
(1)求角A的大。
(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,D為BC邊中點(diǎn),若a=4,AD=2$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),$f(x)={log_{\frac{1}{3}}}$2x
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的表達(dá)式            
(2)解不等式f(x)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2,則[lg1]+[lg2]+[lg3]+…+[lg100]=92.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.$1+11+111+…+\underbrace{11111…1}_{n個(gè)1}$之和是$\frac{{{{10}^{n+1}}-9n-10}}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={-1,0,1},B={1,2},則A∪B等于( 。
A.{0,1}B.{1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a<0時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案