設(shè)f(x)=2x-2-x.若當(dāng)數(shù)學(xué)公式時(shí),數(shù)學(xué)公式恒成立,則實(shí)數(shù)m的取值范圍是


  1. A.
    (-∞,-2)
  2. B.
    (-∞,-2]∪[1,+∞)
  3. C.
    (-2,1)
  4. D.
    (-∞,-2)∪(1,+∞)
D
分析:先判斷f(x)的奇偶性、單調(diào)性,利用函數(shù)的性質(zhì)把不等式中的符號(hào)“f”去掉,轉(zhuǎn)化為具體不等式,進(jìn)而把恒成立問(wèn)題轉(zhuǎn)化為函數(shù)最值解決即可.
解答:因?yàn)閒(x)的定義域?yàn)镽,且f(-x)=2-x-2x=-(2x-2-x)=-f(x),
所以f(x)為奇函數(shù);
又易知f(x)=2x-2-x為增函數(shù),
所以可化為f()>-f(m2-3)=f(3-m2),
也即m->3-m2,即在當(dāng)時(shí)恒成立,
當(dāng)時(shí),cosθ∈[0,1),≤-1,
所以m2+m-3>-1,解得m<-2或m>1,即實(shí)數(shù)m的取值范圍為(-∞,-2)∪(1,+∞).
故選D.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查函數(shù)恒成立問(wèn)題,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x-2,x≤2
log2(x-1),x>2
,則f(f(5))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•薊縣二模)設(shè)f(x)=2x-2-x.若當(dāng)θ∈[-
π
2
,0)
時(shí),f(m-
1
cosθ-1
)+f(m2-3)>0
恒成立,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x-2-x
2
,g(x)=
2x+2-x
2
,下列四個(gè)結(jié)論
(1)f(2x)=2f(x)•g(x);                       (2)g(2x)=2f(x)•g(x);
(3)f(2x)=[f(x)]2+[g(x)]2;                    (4)g(2x)=[f(x)]2+[g(x)]2
中恒成立的個(gè)數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)=
2x-2,x≤2
log2(x-1),x>2
,則f(f(5))=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案