(2012•天津)已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=a1b1+a2b2+…+anbn,n∈N*,證明:Tn-8=an-1bn+1(n∈N*,n≥2).
分析:(1)直接設(shè)出首項和公差,根據(jù)條件求出首項和公差,即可求出通項.
(2)先借助于錯位相減法求出Tn的表達式;再代入所要證明的結(jié)論的兩邊,即可得到結(jié)論成立.
解答:解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程組
2+3d+2q3=27
8+6d-2q3=10
,
解得
d=3
q=2
,
所以:an=3n-1,bn=2n
(2)證明:由第一問得:Tn=2×2+5×22+8×23+…+(3n-1)×2n;   ①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
6×(1-2n)
1-2
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8.
即Tn-8=(3n-4)×2n+1
而當n≥2時,an-1bn+1=(3n-4)×2n+1
∴Tn-8=an-1bn+1(n∈N*,n≥2).
點評:本題主要考察等差數(shù)列和等比數(shù)列的綜合問題.解決這類問題的關(guān)鍵在于熟練掌握基礎(chǔ)知識,基本方法.并考察計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n).則m=
-1
-1
,n=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)已知函數(shù)f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[-
π
4
,
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與雙曲線C2
x2
4
-
y2
16
=1
有相同的漸近線,且C1的右焦點為F(
5
,0).則a=
1
1
,b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)已知函數(shù)y=
|x2-1|x-1
的圖象與函數(shù)y=kx-2的圖象恰有兩個交點,則實數(shù)k的取值范圍是
(0,1)∪(1,4)
(0,1)∪(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值;
(3)證明:
n
i=1
2
2i-1
-ln(2n+1)<2
(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案