20.用綜合法或分析法證明:
(1)如果a,b>0,則lg $\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$;
(2)$\sqrt{6}$+$\sqrt{10}$>2$\sqrt{3}$+2.

分析 (1)利用基本不等式,結(jié)合y=lgx在(0,+∞)上增函數(shù)即可證明;
(2)用分析法證明不等式成立,就是尋找使不等式成立的充分條件,直到使不等式成立的充分條件顯然成立為止.

解答 證明:(1)當(dāng)a,b>0時(shí),有$\frac{a+b}{2}$≥$\sqrt{ab}$,
∴l(xiāng)g$\frac{a+b}{2}$≥lg$\sqrt{ab}$,
∴l(xiāng)g $\frac{a+b}{2}$≥$\frac{1}{2}$lgab=$\frac{lga+lgb}{2}$.…(5分)
(2)要證$\sqrt{6}$+$\sqrt{10}$>2$\sqrt{3}$+2,
只要證($\sqrt{6}$+$\sqrt{10}$)2>(2$\sqrt{3}$+2)2,
即2$\sqrt{60}$>2$\sqrt{48}$,這是顯然成立的,
所以,原不等式成立.…(10分)

點(diǎn)評(píng) 本題考查綜合法或分析法,考查對(duì)數(shù)函數(shù)的單調(diào)性和定義域,基本不等式的應(yīng)用,掌握這兩種方法證明不等式是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)M(-1,0),N(1,0),曲線E上任意一點(diǎn)到點(diǎn)M的距離均是到點(diǎn)N的距離的$\sqrt{3}$倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線l:x-my-1=0交曲線E于A,C兩點(diǎn),直線l2:mx+y-m=0交曲線E于B,D兩點(diǎn),若CD的斜率為-1時(shí),求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,某幾何體的三視圖如圖所示,則此幾何體的體積為64-$\frac{32π}{3}$.(單位:cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=2時(shí),求證:對(duì)于?x>-1,f(x)<g(x)恒成立;
(Ⅲ)若存在x0>-1,使得當(dāng)x∈(-1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=λ1($\frac{a}{3}{x}^{3}$+$\frac{b-1}{2}$x2+x)+λ2x•3x,(a,b∈R且a>0).
(1)當(dāng)λ1=1,λ2=0時(shí),若已知x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn),且滿足:x1<1<x2<2,求證:f′(-1)>3;
(2)當(dāng)λ1=0,λ2=1時(shí),
①求實(shí)數(shù)y=f(x)-3(1+ln3)x(x>0)的最小值;
②對(duì)于任意正實(shí)數(shù)a,b,c,當(dāng)a+b+c=3時(shí),求證:a•3a+b•3b+c•3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知f(x)=$\left\{\begin{array}{l}{|x|-1,x>0}\\{si{n}^{2}x,x≤0}\end{array}\right.$,則下列結(jié)論正確的是(  )
A.f(x)為偶函數(shù)B.f(x)為增函數(shù)C.f(x)為周期函數(shù)D.f(x)值域?yàn)椋?1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)的值;
(2)當(dāng)實(shí)數(shù)x為何值時(shí),x$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=ax3+bx2+cx+d在O、A兩點(diǎn)處取得極值,其中O是坐標(biāo)原點(diǎn),A在曲線y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,則曲線y=f(x)的切線斜率的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若圓經(jīng)過(guò)點(diǎn)A(2,0),B(4,0),C(1,2),求這個(gè)圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案