13.有紅、黃、藍三種顏色,大小相同的小球各三個,在每種顏色的3個小球上分別標上號碼1、2、3,現(xiàn)任取出3個,它們的顏色與號碼均不相同的概率是( 。
A.$\frac{1}{14}$B.$\frac{9}{28}$C.$\frac{3}{28}$D.$\frac{3}{56}$

分析 根據(jù)排列組合求出,所有的基本事件,再求出滿足條件的基本事件,根據(jù)概率公式計算即可.

解答 解:紅、黃、藍三種顏色,大小相同的小球各三個,在每種顏色的3個小球上分別標上號碼1、2、3,現(xiàn)任取出3個,共有C93=84,
它們的顏色和號碼均不相等的取法有A33=3×2×1=6種,
故它們的顏色號碼均不相等的概率是$\frac{6}{84}$=$\frac{1}{14}$,
故選:A.

點評 本題考查了古典概率問題,關(guān)鍵是利用排列組合,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.M是△ABC所在平面上一點,滿足$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$\overrightarrow{AB}$,則$\frac{{S}_{△ABM}}{{S}_{△ABC}}$為( 。
A.1:2B.1:3C.1:1D.1:4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知f(x)為R上的減函數(shù),則滿足f($\frac{1}{x-1}$)>f(1)的實數(shù)x的取值范圍是( 。
A.(-∞,2)B.(2,+∞)C.(-∞,1)∪(1,2)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點,過F1的直線l與雙曲線C的左右兩支分別交于A,B兩點,若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的漸近線方程為y=±2$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知A(0,1),B(0,-1)是橢圓$\frac{x^2}{2}$+y2=1的兩個頂點,過其右焦點F的直線l與橢圓交于C,D兩點,與y軸交于P點(異于A,B兩點),直線AC與直線BD交于Q點.
(Ⅰ)當|CD|=$\frac{{3\sqrt{2}}}{2}$時,求直線l的方程;
(Ⅱ)求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,B=$\frac{π}{6}$,C=$\frac{π}{4}$,S△ABC=$\frac{\sqrt{3}+1}{2}$,則c=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一袋中有8個大小相同的小球,其中1個黑球,3個白球,4個紅球.若從袋中一次摸出2個小球,求恰為異色球的概率為(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{15}{28}$D.$\frac{19}{28}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.執(zhí)行如圖所示的流程圖,輸出的S的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于( 。ヽm3
A.4+$\frac{2}{3}π$B.4+$\frac{3}{2}$πC.6+$\frac{2}{3}π$D.6+$\frac{3}{2}$π

查看答案和解析>>

同步練習冊答案