【題目】在正三棱錐中,平面,底面邊長,則正三棱錐的外接球的表面積為________.

【答案】

【解析】

由正棱錐的性質(zhì)和平面可以推得兩兩互相垂直,由此可將正三棱錐補成一個正方體,并且正方體的外接球就是正三棱錐的外接球,通過求正方體的外接球的表面積,也就求出正三棱的外接球的表面積.

在正三棱錐中,取中點,連接,則,因為平面,又,

設(shè),因為底面邊長,所以,

,

所以,即,解得,即

所以在中有,所以,即

又因為平面,所以,所以兩兩互相垂直,

所以將正三棱錐補為一個正方體,如下圖1所示,

正三棱錐的外接球,就是這個正方體的外接球,且正方體的棱長為2,

由下圖2可以看出,正方體的外接球的直徑等于正方體的體對角線長,

設(shè)外接球的半徑為R,則,解得,所以球的表面積,

故填:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過拋物線上的一點,作的兩條切線,與軸分別相交于,兩點.

(Ⅰ)若切線過拋物線的焦點,求直線斜率;

(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4個正方體中,點,,,分別為正方體的頂點或所在棱的中點,則在這4個正方體中,滿足直線平面的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對于任意的,總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求的取值范圍;

(2)若且關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(12)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0,f1.25)<0,則方程的根落在區(qū)間( 。

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們可以把看作每天的"進步率都是1%,一年后是;而把看作每天的落后率都是1%,一年后是.利用計算工具計算并回答下列問題:

1)一年后進步的是落后的多少倍?

2)大約經(jīng)過多少天后進步的分別是落后10倍、100倍、1000倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)設(shè) ,,若 的必要不充分條件,求實數(shù)的取值范圍

)已知命題方程表示焦點在軸上的橢圓;命題:雙曲線的離心率.若 有且只有一個為真命題,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案