若函數(shù)f(x)=
tanx,x≥0
log2(-x),x<0
,則f(f(
4
))
=
0
0
分析:直接根據(jù)分段函數(shù)的定義域以及特殊角的三角函數(shù)值解答即可.
解答:解:∵
4
>0
∴f(
4
)=tan
4
=tan(π-
π
4
)=-tan
π
4
=-1
又∵-1<
∴f(-1)=log21=0
f(f(
4
))
=0
故答案為:0
點評:本題考查了三角函數(shù)的誘導(dǎo)公式以及特殊角的三角函數(shù)值,熟記公式是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在原點,焦點坐標(biāo)為F(2,0),點P的坐標(biāo)為(m,0)(m≠0),設(shè)過點P的直線l交拋物線C于A,B兩點,點P關(guān)于原點的對稱點為點Q.
(1)當(dāng)直線l的斜率為1時,求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問在x軸上是否存在一定點T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點T 的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試 文科數(shù)學(xué)(四川卷) 題型:044

已知函數(shù)f(x)=x8-4,設(shè)曲線yf(x)在點(xnf(xn))處的切線與x軸的交點為(Fn+1,u)(u,N+),其中為正實數(shù).

(Ⅰ)用Fx表示xa+1;

(Ⅱ)若a1=4,記anlg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xa}的通項公式;

(Ⅲ)若x1=4,bnxa=2,Tn是數(shù)列{ba}的前n項和,證明Ta<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市八校聯(lián)考高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線C的頂點在原點,焦點坐標(biāo)為F(2,0),點P的坐標(biāo)為(m,0)(m≠0),設(shè)過點P的直線l交拋物線C于A,B兩點,點P關(guān)于原點的對稱點為點Q.
(1)當(dāng)直線l的斜率為1時,求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問在x軸上是否存在一定點T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點T 的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案