設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求p 的最小值.
(3)證明不等式:
(1)依題意得
,而函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052511291321876291/SYS201205251131351406739903_DA.files/image004.png">
∴在上為減函數(shù),在上為增函數(shù),則在上為增函數(shù)
即實(shí)數(shù)m的取值范圍為 …………………4分
(2)
則
顯然,函數(shù)在上為減函數(shù),在上為增函數(shù)
則函數(shù)的最小值為
所以,要使方程至少有一個解,則,即p的最小值為0 ……8分
(3)由(2)可知: 在上恒成立
所以 ,當(dāng)且僅當(dāng)x=0時(shí)等號成立
令,則 代入上面不等式得:
即, 即
所以,,,,…,
將以上n個等式相加即可得到:
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年河南省許昌市高二下學(xué)期聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題12分)
設(shè)函數(shù)
(1)若關(guān)于的方程有三個不同的實(shí)根,求實(shí)數(shù)的取值范圍。
(2)當(dāng)時(shí),恒成立。求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三第二次教學(xué)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求 的最小值.
(3)證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三高考預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求p 的最小值.
(3)證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省高三第七次適應(yīng)性訓(xùn)練理科數(shù)學(xué)(解析版) 題型:解答題
設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求p 的最小值.
(3)證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧市高二3月月考理科數(shù)學(xué)試卷 題型:解答題
設(shè)函數(shù)
(1)若關(guān)于x的不等式在有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個解,求p 的最小值.
(3)證明不等式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com