【題目】已知直線,.
(1)求直線和直線交點(diǎn)P的坐標(biāo);
(2)若直線l經(jīng)過點(diǎn)P且在兩坐標(biāo)軸上的截距互為相反數(shù),求直線l的一般式方程.
【答案】(1)(2,1);(2)x-2y=0或x-y-1=0
【解析】
(1)聯(lián)立,解方程組即得直線l1和直線l2交點(diǎn)P的坐標(biāo);(2)當(dāng)直線經(jīng)過原點(diǎn)時(shí),利用直線的斜截式方程求直線l的方程,當(dāng)直線不經(jīng)過原點(diǎn)時(shí),利用直線的截距式方程求直線l的方程.綜合得到直線l的一般式方程.
(1)聯(lián)立,解得x=2,y=1.
∴直線l1和直線l2交點(diǎn)P的坐標(biāo)為(2,1).
(2)直線經(jīng)過原點(diǎn)時(shí),可得直線l的方程為:y=x,即x-2y=0.
直線不經(jīng)過原點(diǎn)時(shí),可設(shè)直線l的方程為:x-y=a,
把點(diǎn)P的坐標(biāo)代入可得:2-1=a,
即a=1,可得方程為:x-y=1.
綜上可得直線l的方程為:x-2y=0或x-y-1=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.已知.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓:相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,點(diǎn)G、H分別為邊CD、DA的中點(diǎn),點(diǎn)M是線段BE上的動(dòng)點(diǎn).
(I)求證:GH⊥DM;
(II)當(dāng)三棱錐D-MGH的體積最大時(shí),求點(diǎn)A到面MGH的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】搶“微信紅包”已經(jīng)成為中國百姓歡度春節(jié)時(shí)非常喜愛的一項(xiàng)活動(dòng).小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
對這20個(gè)數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:
組別 | 紅包金額分組 | 頻數(shù) |
2 | ||
9 | ||
3 | ||
(Ⅰ)寫出的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記組紅包金額的平均數(shù)與方差分別為組紅包金額的平均數(shù)與方差分別為,試分別比較與、與的大。唬ㄖ恍鑼懗鼋Y(jié)論)
(Ⅲ)從兩組的所有數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)差的絕對值為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,
(1)求證:cos2+cos2=1;
(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求證:△ABC為鈍角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會為了解同學(xué)對社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再從這5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com