【題目】已知直線,.
(1)若直線,分別經(jīng)過定點,,求定點,的坐標;
(2)是否存在一個定點,使得與的交點到定點的距離為定值?如果存在,求出定點的坐標及定值;如果不存在,說明理由.
【答案】(1) ;(2) 存在,, .
【解析】
(1)求直線經(jīng)過定點,即當.求直線經(jīng)過定點,可將化簡為即當
即可得出答案.
(2) 解法一:通過直線可解得將其代入,整理的,進而可以得出定點,和定長.
解法二:當,直線的斜率,直線的斜率,所以,即兩條直線始終垂直,根據(jù)由圓的知識:圓周角所對的弦是圓的直徑, 即可得出和為直徑端點的圓周上.即可求出答案.
(1)由,當,則.
由,
當,則.
(2)解法一:由可知當時,得:,
代入,,
整理得:,
可得交點一定在圓:上,
故滿足條件的定點為,定值.
解法二:由時兩直線垂直,
時,,即兩條直線始終垂直,
又過定點,過定點,
則與的交點在以和為直徑端點的圓周上,
根據(jù)中點坐標公式: 的的圓心為
根兩點距離公式: 求得
可得交點一定在圓:上,
故滿足條件的定點為,定值.
綜上所述: 存在一個定點,使得與的交點到定點的距離為.
科目:高中數(shù)學 來源: 題型:
【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺“新聞現(xiàn)場”播報,近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因為感冒來的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年1到6月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:
日期 | 1月20日 | 2月20日 | 3月20日 | 4月20日 | 5月20日 | 6月20日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)人 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的極大值;
(2)當時,不等式恒成立,求的最小值;
(3)是否存在實數(shù),使得方程在上有唯一的根,若存在,求出所有的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足, ,(N*).
(Ⅰ)寫出的值;
(Ⅱ)設(shè),求的通項公式;
(Ⅲ)記數(shù)列的前項和為,求數(shù)列的前項和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題方程表示焦點在軸上的雙曲線;命題若存在,使得成立.
(1)如果命題是真命題,求實數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”江南梅雨的點點滴滴都流潤著濃洌的詩情每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南Q鎮(zhèn)年梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
Ⅰ“梅實初黃暮雨深”假設(shè)每年的梅雨天氣相互獨立,求Q鎮(zhèn)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率;
Ⅱ“江南梅雨無限愁”在Q鎮(zhèn)承包了20畝土地種植楊梅的老李也在犯愁,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產(chǎn)量畝與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為元,請你幫助老李排解憂愁,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?需說明理由
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是規(guī)劃的生態(tài)文旅園區(qū),其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為千米.根據(jù)發(fā)展規(guī)劃,要在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點,并要求與扇形弧相切于點(不與重合).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計.
(1)試將公路的長度表示為的函數(shù);
(2)已知公路每千米的造價為萬元,問建造這樣一條公路,至少要投入多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 如圖所示,△ABC為正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中點.
(1)求證:DE=DA;
(2)求證:平面BDM⊥平面ECA;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有,,,同時日銷售量m(單位:個)與成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關(guān)系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)與的圖象在上有且只有一個公共點)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com