【題目】如圖,已知拋物線E)與圓O相交于AB兩點(diǎn),且.過劣弧上的動點(diǎn)作圓O的切線交拋物線EC,D兩點(diǎn),分別以C,D為切點(diǎn)作拋物線E的切線,,相交于點(diǎn)M.

1)求拋物線E的方程;

2)求點(diǎn)M到直線距離的最大值.

【答案】1;(2.

【解析】

1)利用求得圓心到弦的距離為1,即可求得點(diǎn)的坐標(biāo)為,將代入拋物線方程可得,問題得解

2)設(shè),,分別求得的方程,即可求得點(diǎn)的橫、縱坐標(biāo)為,聯(lián)立直線的方程和拋物線方程可得:,,即可得點(diǎn)的橫、縱坐標(biāo)為,再由點(diǎn)到直線距離公式可得點(diǎn)M到直線的距離為:,,利用其單調(diào)性可得:,問題得解

1,且B在圓上,

所以圓心到弦的距離

由拋物線和圓的對稱性可得,

代入拋物線可得,解得

∴拋物線E的方程為;

2)設(shè),

,可得

,

的方程為:,即——①,

同理的方程為:——②,

聯(lián)立①②解得,

又直線與圓切于點(diǎn)

易得方程為,其中,滿足,,

聯(lián)立,化簡得

,

設(shè),則,,

∴點(diǎn)M到直線的距離為:

,

易知d關(guān)于單調(diào)遞減,

即點(diǎn)M到直線距離的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:)的變化規(guī)律,指數(shù)增長率rR0,T近似滿足R0 =1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)

A.1.2B.1.8

C.2.5D.3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,為矩形,為等腰梯形,,,且,平面平面,分別為,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著2022年北京冬奧會的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動人數(shù)快速上升,冰雪運(yùn)動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖則下面結(jié)論中正確的是( .

A.2012-2018年,中國雪場滑雪人數(shù)逐年增加;

B.2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;

C.中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;

D.2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實(shí)數(shù)的值;

若當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍;

是函數(shù)的兩個零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓的左、右焦點(diǎn)分別為F1,F2,點(diǎn)A在橢圓E上且在第一象限內(nèi),AF2F1F2,直線AF1與橢圓E相交于另一點(diǎn)B

1)求AF1F2的周長;

2)在x軸上任取一點(diǎn)P,直線AP與橢圓E的右準(zhǔn)線相交于點(diǎn)Q,求的最小值;

3)設(shè)點(diǎn)M在橢圓E上,記OABMAB的面積分別為S1,S2,若S2=3S1,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處切線的斜率為,判斷函數(shù)的單調(diào)性;

2)若函數(shù)有兩個零點(diǎn),,證明,并指出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為滿足人民對美好生活的向往,環(huán)保部門要求相關(guān)企業(yè)加強(qiáng)污水治理,排放未達(dá)標(biāo)的企業(yè)要限期整改,設(shè)企業(yè)的污水排放量W與時間t的關(guān)系為,用的大小評價在這段時間內(nèi)企業(yè)污水治理能力的強(qiáng)弱,已知整改期內(nèi),甲、乙兩企業(yè)的污水排放量與時間的關(guān)系如下圖所示.


給出下列四個結(jié)論:

①在這段時間內(nèi),甲企業(yè)的污水治理能力比乙企業(yè)強(qiáng);

②在時刻,甲企業(yè)的污水治理能力比乙企業(yè)強(qiáng);

③在時刻,甲、乙兩企業(yè)的污水排放都已達(dá)標(biāo);

④甲企業(yè)在這三段時間中,在的污水治理能力最強(qiáng).

其中所有正確結(jié)論的序號是____________________

查看答案和解析>>

同步練習(xí)冊答案