6.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}a{x^2}$-bx,設(shè)h(x)=f(x)-g(x).
(1)求函數(shù)F(x)=f(x)-x的極值;
(2)若g(2)=2,若a<0,討論函數(shù)h(x)的單調(diào)性;
(3)若函數(shù)g(x)是關(guān)于x的一次函數(shù),且函數(shù)h(x)有兩個(gè)不同的零點(diǎn)x1,x2,求b的取值范圍.

分析 (1)求出F(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出h(x)的導(dǎo)數(shù),通過討論a的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)h(x)的單調(diào)區(qū)間即可;
(3)求出h(x)的表達(dá)式,求出h(x)的導(dǎo)數(shù),求出h(x)的單調(diào)性得到h(x)的最大值,從而求出b的范圍即可.

解答 解:(1)∵F'(x)=$\frac{1}{x}$-1,令F'(x)=0,即x=1,
令F′(x)>0,解得:0<x<1,令F′(x)<0,解得:x>1,
∴F(x)在(0,1)在(0,1)遞增,在(1,+∞)遞減,
∴F(x)極大值=F(1)=-1;
(2)h(x)=f(x)-g(x)=lnx-$\frac{1}{2}$ax2+bx,其定義域?yàn)椋?,+x)
.$h′(x)=\frac{1}{x}-ax+(a-1)=\frac{{-a{x^2}+(a-1)x+1}}{x}=\frac{-(ax-1)(x+1)}{x}$,
又a<0,令h′(x)=0,得${x_1}=-\frac{1}{a},{x_2}=1$.
1°..當(dāng)a<-1時(shí),則$0<-\frac{1}{a}<1$,
所以函數(shù)h(x)在區(qū)間( 0,$-\frac{1}{a}$)和(1,+∞)上單調(diào)遞增;
在區(qū)間($-\frac{1}{a}$,1)上單調(diào)遞減.
2°.當(dāng)a=-1時(shí),h′(x)>0,數(shù)h(x)在區(qū)間(0,+∞)單調(diào)遞增
3°.當(dāng)-1<a<0時(shí),則$-\frac{1}{a}>1$,
所以函數(shù)h(x)在區(qū)間(0,1)和($-\frac{1}{a}$,+∞)上單調(diào)遞增;
在區(qū)間(1,$-\frac{1}{a}$)上單調(diào)遞減.                                       
(3)∵函數(shù)g(x)是關(guān)于x的一次函數(shù),故a=0,
∴h(x)=lnx+bx,其定義域?yàn)椋?,+∞),
∵h(yuǎn)(x) 有兩個(gè)不同的零點(diǎn)x1,x2,∴b<0,
h′(x)=$\frac{1+bx}{x}$,令h′(x)>0,解得:0<x<-$\frac{1}$,
令h′(x)<0,解得:x>-$\frac{1}$,
∴h(x)在(0,-$\frac{1}$)遞增,在(-$\frac{1}$,+∞)遞減,
∴x=-$\frac{1}$是極大值點(diǎn),
∴h(-$\frac{1}$)是最大值,
∴h(-$\frac{1}$)>0,
∴b的取值范圍是($-\frac{1}{e}$,0).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l過A(1,1)和點(diǎn)B(0,$\frac{1}{3}$)
(1)求直線l的方程
(2)求l關(guān)于直線x+y-2=0對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知{an}是等差數(shù)列,公差d不為零.若a2,a3,a7成等比數(shù)列,且2a1+a2=1,則an=$\frac{5}{3}$-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值的和為a.
(1)求a的值;
(2)設(shè)函數(shù)Φ(x)=loga$\frac{mx}{\sqrt{1+{x}^{2}}}$,若對(duì)任意x∈[1,2],不等式Φ(x)+logam≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知A(-1,2)為拋物線C:y=2x2上的點(diǎn),直線l1過點(diǎn)A,且與拋物線C相切.直線l2:x=a(a≠-1)交拋物線C于點(diǎn)B,交直線l1于點(diǎn)D.設(shè)△ABD的面積為S1
(1)求直線l1的方程及S1的值;
(2)設(shè)由拋物線C,直線l1,l2所圍成的圖形的面積為S2,求S1:S2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.旅游公司為3個(gè)旅游團(tuán)提供甲、乙、丙、丁4條旅游線路,每個(gè)旅游團(tuán)任選其中一條.
(1)求3個(gè)旅游團(tuán)選擇3條不同的線路的概率;
(2)求恰有2條線路沒有被選擇的概率;
(3)求至少有一個(gè)旅游團(tuán)選擇甲線路旅游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.運(yùn)行如圖所示的程序框圖,如果在區(qū)間[0,e]內(nèi)任意輸入一個(gè)x的值,則輸出的f(x)值不小于常數(shù)e的概率是(  )
A.$\frac{1}{e}$B.1-$\frac{1}{e}$C.1+$\frac{1}{e}$D.$\frac{1}{e+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知橢圓C經(jīng)過點(diǎn)(2,$\sqrt{2}$),且中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),直線y=kx(k≠0)與橢圓C交于E、F兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N.
(1)求橢圓C的方程;
(2)若點(diǎn)F的坐標(biāo)為(2,$\sqrt{2}$),求以MN為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)g(x)=x2+(a-1)x+a-2a2,h(x)=(x-1)2,若不等式g(x)>0的解集為集合A,不等式h(x)<1的解集為集合B.
(1)若集合A∩B≠∅,求實(shí)數(shù)a的取值范圍.
(2)已知logx[f(x)]-logx[g(x)]=1,且不等式f(x)>0的解集為集合C,若集合C∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案