【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:
(1)(i)設(shè)所采集的40個連續(xù)正常運(yùn)行時(shí)間的中位數(shù)m,并將連續(xù)正常運(yùn)行時(shí)間超過m和不超過m的次數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
改造前 | ||
改造后 |
(ii)根據(jù)(i)中的列聯(lián)表,能否有99%的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù),工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種.對生產(chǎn)線設(shè)定維護(hù)周期為T天(即從開工運(yùn)行到第kT天進(jìn)行維護(hù).生產(chǎn)線在一個生產(chǎn)周期內(nèi)設(shè)置幾個維護(hù)周期,每個維護(hù)周期相互獨(dú)立.在一個維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元/次;保障維護(hù)費(fèi)第一次為0.2萬元/周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,.以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列.
【答案】(1)(i)列聯(lián)表詳見解析;(ii)有99%的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異;(2)詳見解析.
【解析】
(1)(i)根據(jù)莖葉圖的數(shù)據(jù)先求得中位數(shù),進(jìn)而得到,,,,完成列聯(lián)表;(ii)根據(jù)(i)中的列聯(lián)表將數(shù)據(jù)代入,求得,然后與臨界表對比下結(jié)論.
(2根據(jù)莖葉圖可知:生產(chǎn)線需保障維護(hù)的概率為,設(shè)一個生產(chǎn)周期內(nèi)需要次維護(hù),,根據(jù)正常維護(hù)費(fèi)為0.5萬元/次;保障維護(hù)費(fèi)第一次為0.2萬元/周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元,得到一個生產(chǎn)周期內(nèi)保障維護(hù)X次的生產(chǎn)維護(hù)費(fèi)為萬元,設(shè)一個生產(chǎn)周期內(nèi)的生產(chǎn)維護(hù)費(fèi)為X萬元,則X可能取值為2,2.2,2.6,3.2,4,然后求得相應(yīng)的概率列出分布列.
(1)(i)由莖葉圖的數(shù)據(jù)可得中位數(shù),
根據(jù)莖葉圖可得:,,,,
超過 | 不超過 | |
改造前 | 5 | 15 |
改造后 | 15 | 5 |
(ii)根據(jù)(1)中的列聯(lián)表,,
有99%的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異;
(2)120天的一個生產(chǎn)周期內(nèi)有4個維護(hù)周期,一個維護(hù)周期為30天,一個維護(hù)周期內(nèi),以生產(chǎn)線在技術(shù)改造后一個維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,
生產(chǎn)線需保障維護(hù)的概率為,
設(shè)一個生產(chǎn)周期內(nèi)需要次維護(hù),,正常維護(hù)費(fèi)為萬元,
保障維護(hù)費(fèi)為首項(xiàng)為0.2,公差為0.2的等差數(shù)列,共次維護(hù)需要的保障費(fèi)為元,
故一個生產(chǎn)周期內(nèi)保障維護(hù)X次的生產(chǎn)維護(hù)費(fèi)為萬元,
設(shè)一個生產(chǎn)周期內(nèi)的生產(chǎn)維護(hù)費(fèi)為X萬元,則X可能取值為2,2.2,2.6,3.2,4,
則,
,
,
,
,
則X的分布列為:
2 | 2.2 | 2.6 | 3.2 | 4 | |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元).這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購物車?yán)镏袊孪M(fèi)的奇跡,為了研究歷年銷售額的變化趨勢,一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)y(單位:十億元),繪制如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
銷售額y | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示
(1)根據(jù)散點(diǎn)圖判斷,與哪一個適宜作為銷售額關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及如表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測2020年天貓雙十一銷售額;(注:數(shù)據(jù)保留小數(shù)點(diǎn)后一位)
(3)把銷售超過100(十億元)的年份叫“暢銷年”,把銷售額超過200(十億元)的年份叫“狂歡年”,從2010年到2019年這十年的“暢銷年”中任取2個,求至少取到一個“狂歡年”的概率.
參考數(shù)據(jù):
參考公式:
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時(shí)節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)査了部分市民(問卷調(diào)査表如下表所示),并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖表(如下圖)
由兩個統(tǒng)計(jì)圖表可以求得,選擇D選項(xiàng)的人數(shù)和扇形統(tǒng)計(jì)圖中E的圓心角度數(shù)分別為( )
A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C方程為,橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.
(1)證明圓C恒過一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);
(2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;
(3)當(dāng)時(shí),圓C與橢圓的左準(zhǔn)線相切,且橢圓過(1)中的點(diǎn)M,求此時(shí)橢圓方程;在x軸上是否存在兩定點(diǎn)A,B使得對橢圓上任意一點(diǎn)Q(異于長軸端點(diǎn)),直線,的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個()一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.
(1)的分布列及其期望;
(2)(i)試說明,當(dāng)越大時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;
(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標(biāo)作為劃分國家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是( )
A.病人在5月13日12時(shí)的體溫是
B.病人體溫在5月14日0時(shí)到6時(shí)下降最快
C.從體溫上看,這個病人的病情在逐漸好轉(zhuǎn)
D.病人體溫在5月15日18時(shí)開始逐漸穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在上任意一點(diǎn)處的切線為,若過右焦點(diǎn)的直線交橢圓于兩點(diǎn),已知在點(diǎn)處切線相交于.
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)①若過點(diǎn)且與直線垂直的直線(斜率存在且不為零)交橢圓于兩點(diǎn),證明為定值.
②四邊形的面積是否有最小值,若有請求出最小值;若沒有請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com