(本小題滿分14分)
如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2,
AA=2, E、E分別是棱AD、AA的中點.
(1)設F是棱AB的中點,證明:直線EE//平面FCC;
(2)證明:平面D1AC⊥平面BB1C1C.
略
【解析】證明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中點F1,
連接A1D,C1F1,CF1,因為AB=4, CD=2,且AB//CD,
所以CDA1F1,A1F1CD為平行四邊形, ………2分
所以CF1//A1D,
又因為E、E分別是棱AD、AA的中點,
所以EE1//A1D, ………3分
所以CF1//EE1, ………4分
又因為平面FCC, ………5分
平面FCC, ………6分
所以直線EE//平面FCC. ………7分
(2)連接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,
所以CC1⊥AC, ………8分
因為底面ABCD為等腰梯形,AB=4, BC=2,
F是棱AB的中點,所以CF=CB=BF,
△BCF為正三角形,………10分
,△ACF為等腰三角形,且
所以AC⊥BC,
又因為BC與CC1都在平面BB1C1C內且交于點C,
所以AC⊥平面BB1C1C, ………12分
而平面D1AC, ………13分
所以平面D1AC⊥平面BB1C1C. ………………………14分
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com