【題目】如圖所示,在三棱柱中,為正方形,為菱形,.
(Ⅰ)求證:平面平面;
(Ⅱ)若是中點(diǎn),是二面角的平面角,求直線與平面所成角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)先根據(jù)平面幾何知識證明 從而可得 面,可得 ,進(jìn)而得 平面 ,再由面面垂直的判定定理可得結(jié)論;(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法求解即可.
試題解析:(1)證明:連接,因?yàn)?/span>為菱形,所以,又,
,所以面.
故.
因?yàn)?/span>,且,所以面.
而,所以平面平面;
(2)因?yàn)?/span>是二面角的平面角,所以,又是中點(diǎn),
所以,所以為等邊三角形.
如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,
不妨設(shè),則,,,.
設(shè)是平面的一個法向量,則
,即,
取得.
所以,
所以直線與平面所成的余弦值為.
【方法點(diǎn)晴】本題主要考查利用求二面角,面面垂直的判定定理,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,過點(diǎn)的直線交于兩點(diǎn),交軸于點(diǎn)到軸的距離比小.
(Ⅰ)求的方程;
(Ⅱ)若,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對于任意x∈R,都有f(x﹣2)≤f(x),則實(shí)數(shù)a的取值范圍是( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐S﹣ABCD,底面ABCD為菱形,SA⊥平面ABCD,∠ADC=60°,E,F(xiàn)分別是SC,BC的中點(diǎn).
(1)證明:SD⊥AF;
(2)若AB=2,SA=4,求二面角F﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),數(shù)列的前項(xiàng)和為,點(diǎn)在圖象上,且的最小值為.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“x∈R,x2+2<0”是全稱命題;
③若p:x∈R,x2+4x+4≤0,則q:x∈R,x2+4x+4≤0是全稱命題.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, , ),是自然對數(shù)的底數(shù).
(Ⅰ)當(dāng), 時,求函數(shù)的零點(diǎn)個數(shù);
(Ⅱ)若,求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是(只填正確說法序號)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},則A∩B={(0,﹣1),(1,0)};
② 是函數(shù)解析式;
③ 是非奇非偶函數(shù);
④設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),則f(x1+x2)=c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2﹣ax﹣2=0的兩個實(shí)根,不等式m2+5m﹣3≥|x1﹣x2|對任意實(shí)數(shù)α∈[﹣1,1]恒成立;若¬p∧q為真,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com