【題目】設(shè)B、C是定點,且均不在平面α上,動點A在平面α上,且sin∠ABC= , 則點A的軌跡為( 。
A.圓或橢圓
B.拋物線或雙曲線
C.橢圓或雙曲線
D.以上均有可能
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, 平面,,點是上的點,且 .
(1)求證:對任意的 ,都有.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,
若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P﹣ABC的所有頂點都在球O的球面上,△ABC是邊長為1的正三角形,PC為球O的直徑,該三棱錐的體積為 , 則球O的表面積為( )
A.4π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
【答案】D
【解析】
根據(jù)函數(shù)的單調(diào)性可得an+1﹣an>0對于n∈N*恒成立,建立關(guān)系式,解之即可求出k的取值范圍.
∵數(shù)列{an}中,且{an}單調(diào)遞增
∴an+1﹣an>0對于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0對于n∈N*恒成立
∴k<2n+1對于n∈N*恒成立,即k<3
故選:D.
【點睛】
本題主要考查了數(shù)列的性質(zhì),本題易錯誤地求導(dǎo)或把它當成二次函數(shù)來求解,注意n的取值是解題的關(guān)鍵,屬于易錯題.
【題型】單選題
【結(jié)束】
8
【題目】已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , 其中a∈R.若對任意的非零實數(shù)x1 , 存在唯一的非零實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式mx2-2x-m+1<0對于滿足|m|≤2的一切m的值都成立,求x的取值范圍.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,利用一次函數(shù)的單調(diào)性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對滿足|m|≤2的一切m的值都成立,
則需要f(﹣2)<0,f(2)<0.
解不等式組,解得,
∴x的取值范圍是.
【點睛】
本題考查了一次函數(shù)的單調(diào)性、一元二次不等式的解法,考查了轉(zhuǎn)化方法,考查了推理能力與計算能力,屬于中檔題.
【題型】解答題
【結(jié)束】
21
【題目】某廠有一批長為18m的條形鋼板,可以割成1.8m和1.5m長的零件.它們的加工費分別為每個1元和0.6元.售價分別為20元和15元,總加工費要求不超過8元.問如何下料能獲得最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F是拋物線y2=4x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè),OA⊥OB(其中O為坐標原點),則△AOB與△AOF面積之和的最小值是( 。
A.16
B.8
C.8
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓的標準方程:
(1)焦點在y軸上,焦距是4,且經(jīng)過點M(3,2);
(2)c∶a=5∶13,且橢圓上一點到兩焦點的距離的和為26.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com