已知數(shù)列滿(mǎn)足為常數(shù)),成等差數(shù)列.
(Ⅰ)求p的值及數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列滿(mǎn)足,證明:.

(Ⅰ),;(Ⅱ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)利用成等差數(shù)列.可求p的值,再用累加法求數(shù)列的通項(xiàng)公式;(Ⅱ)通過(guò)作差判斷數(shù)列的單調(diào)性或利用數(shù)學(xué)歸納法進(jìn)行證明.
試題解析:(Ⅰ)由

成等差數(shù)列,

              (2分)
依題意知,
當(dāng)時(shí),


相加得

                      (4分)
適合上式,                      (5分)
                         (6分)
(Ⅱ)證明:∵
       (8分)

即當(dāng)時(shí),有                  (10分)
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/25/c/siulj2.png" style="vertical-align:middle;" />                    (11分)
                         (12分)
(Ⅱ)法二:要證
只要證                     (7分)
下面用數(shù)學(xué)歸納法證明:
①當(dāng)時(shí),左邊=12,右邊=9,不等式成立;
當(dāng)時(shí),左邊=36,右邊=36,不等式成立.         (8分)
②假設(shè)當(dāng)時(shí),成立.        (9分)
則當(dāng)時(shí),左邊=4×3k+1=3×4×3k≥3×9k2,
要證3×9k2≥9(k+1)2,
只要正3k2≥(k+1)2,
即證2k2-2k-1≥0.                     (10分)
而當(dāng)k時(shí),上述不等式成立.     (11分)
由①②可知,對(duì)任意,所證不等式成立.         (12分)
考點(diǎn):1.等差中項(xiàng);2.累加法求和;3.數(shù)列單調(diào)性;4.數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前項(xiàng)和為,且的等差中項(xiàng),等差數(shù)列滿(mǎn)足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的前n項(xiàng)和為,滿(mǎn)足等式
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)若數(shù)列滿(mǎn)足,求數(shù)列的前n項(xiàng)和
(Ⅳ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的兩個(gè)無(wú)窮數(shù)列、滿(mǎn)足
(Ⅰ)當(dāng)數(shù)列是常數(shù)列(各項(xiàng)都相等的數(shù)列),且時(shí),求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)都是公差不為0的等差數(shù)列,求證:數(shù)列有無(wú)窮多個(gè),而數(shù)列惟一確定;
(Ⅲ)設(shè),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比
數(shù)列.
(1)若,,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下面四個(gè)圖案,都是由小正三角形構(gòu)成,設(shè)第n個(gè)圖形中所有小正三角形邊上黑點(diǎn)的總數(shù)為.
          
圖1            圖2                圖3                        圖4
(1)求出,,,;
(2)找出的關(guān)系,并求出的表達(dá)式;
(3)求證:().

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的通項(xiàng)公式為,從數(shù)列{an}中依次取出a1,a2,a4,a8,…,,…,構(gòu)成一個(gè)新的數(shù)列{bn},求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{}的前n項(xiàng)和,數(shù)列{}滿(mǎn)足=
(I)求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列{}的前n項(xiàng)和為T(mén)n,求滿(mǎn)足的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

)已知數(shù)列是等差數(shù)列,其前n項(xiàng)和為,,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)p、q是正整數(shù),且p≠q. 證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案