【題目】設(shè)函數(shù) 的定義域為 ,若函數(shù) 滿足下列兩個條件,則稱 在定義域 上是閉函數(shù).① 上是單調(diào)函數(shù);②存在區(qū)間 ,使 上值域為 .如果函數(shù) 為閉函數(shù),則 的取值范圍是.

【答案】
【解析】若函數(shù)f(x)= 為閉函數(shù),則存在區(qū)間[a,b],在區(qū)間[a,b]上,函數(shù)f(x)的值域為[a,b],即 ∴a,b是方程x= 的兩個實數(shù)根, 即a,b是方程x2-(2k+2)x+k2-1=0(x≥ ,x≥k)的兩個不相等的實數(shù)根, 當(dāng)k≤ 時,
當(dāng) 時, 解得 無解
綜上,可得-1<k
故答案為 :
先要弄清楚新定義的閉函數(shù)的含義,由于函數(shù)f(x)是增函數(shù),則問題等價于f(x)=x有兩個不等實根,利用二次方程實根的分布求k的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 軸的交點為 ,且圖象上兩對稱軸之間的最小距離為 ,則使 成立的 的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,圓 ,圓
(Ⅰ)在以 為極點, 軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓 的極坐標(biāo)方程,并求出圓 的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求出 的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐 的底面積 是邊長為 的正三角形, 點在側(cè)面 內(nèi)的射影 的垂心,二面角 的平面角的大小為 ,則 的長為( )

A.3
B.
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)高考與高中學(xué)習(xí)的關(guān)聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和高中學(xué)業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學(xué)、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機(jī)會.計入總成績的高中學(xué)業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學(xué)、生物、信息技術(shù)七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學(xué)都選擇了物理、化學(xué)、歷史組合,各學(xué)科成績達(dá)到二級的概率都是0.8,且三人約定如果達(dá)到二級不參加第二次考試,達(dá)不到二級參加第二次考試,如果設(shè)甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為

為參數(shù), 為直線的傾斜角).

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線有唯一的公共點,求角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求證:當(dāng)時,函數(shù)上,存在唯一的零點;

(2)當(dāng)時,若存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)討論在其定義域上的單調(diào)性;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案