分析:(1)仿寫一個等式,兩式相減,得到數(shù)列的項的遞推關系,據(jù)此遞推關系,判斷出數(shù)列是等差數(shù)列,利用等差數(shù)列的通項公式求出通項.
(2)將數(shù)列的通項裂成兩項的差,通過疊加相互抵消,求出數(shù)列的前n項和,即可得出結論.
解答:解:(1)由
2=a
n+1,n=1代入得a
1=1,
兩邊平方得4S
n=(a
n+1)
2(1),
n≥2時,4S
n-1=(a
n-1+1)
2(2),
(1)-(2),得4a
n=(a
n+1)
2-(a
n-1+1)
2,
∴(a
n-1)
2-(a
n-1+1)
2=0(3分)
∴[(a
n-1)+(a
n-1+1)]•[(a
n-1)-(a
n-1+1)]=0,
由正數(shù)數(shù)列{a
n},得a
n-a
n-1=2,
∴數(shù)列{a
n}是以1為首項,2為公差的等差數(shù)列,
∴有a
n=2n-1;
(2)
bn==
=
(
-),
∴B
n=
(
1-+-+…+
-)=
•=
=
+,
∵n≥1,
∴2n+1≥3,
∴
≤B
n<
.
點評:若知數(shù)列的和與項的遞推關系求通項,常采用仿寫的方法;求數(shù)列的前n項和,一般先判斷通項的特點,然后采用合適的求和方法.