【題目】某市在創(chuàng)建全國(guó)旅游城市的活動(dòng)中,對(duì)一塊以O為圓心,R(R為常數(shù),單位:)為半徑的半圓形荒地進(jìn)行治理改造,其中弓形BCD區(qū)域(陰影部分)種植草坪,OBD區(qū)域用于兒童樂(lè)園出租,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55,兒童樂(lè)園出租的利潤(rùn)是每平方米95.

(1)設(shè)∠BOD=θ(單位:弧度),θ表示弓形BCD的面積S=f(θ).

(2)如果該市規(guī)劃辦邀請(qǐng)你規(guī)劃這塊土地,如何設(shè)計(jì)∠BOD的大小才能使總利潤(rùn)最大?并求出最大值.

【答案】(1)S=f(θ)= R2(θ-sin θ),θ(0,π).(2)見(jiàn)解析

【解析】

(1)由S=S﹣S,利用扇形及三角形面積公式即得;

(2)由題意列出函數(shù)關(guān)系式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性求得最大值即可.

: (1)S=R2θ,S△OBD=R2sinθ,

S=f(θ)=R2(θ﹣sinθ),θ∈(0,π)

(2)設(shè)總利潤(rùn)為y元,兒童樂(lè)園利潤(rùn)為y1元,種植草坪成本為y2元,種植觀賞植物成本為y3元;

則y1=R2sinθ95,y2=R2(θ﹣sinθ)5,y3=R2(π﹣θ)55,

∴y=y1﹣y2﹣y3=R2(100sinθ+50θ﹣55π),

設(shè)g(θ)=100sinθ+50θ﹣55π,θ∈(0,π).

∴g′(θ)=100cosθ+50

∴g′(θ)>0,cosθ>﹣,g(θ)在θ∈(0,)上為增函數(shù);

g′(θ)<0,cosθ<﹣,g(θ)在θ∈(,π)上為減函數(shù);

當(dāng)θ=時(shí),g(θ)取到最大值,此時(shí)總利潤(rùn)最大,

此時(shí)總利潤(rùn)最大:y=R2(100sinθ+50θ﹣55π)=R2(50π).

答:所以當(dāng)園林公司把扇形的圓心角設(shè)計(jì)成時(shí),總利潤(rùn)取最大值R2(50π)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且時(shí),總有成立.

a的值;

判斷并證明函數(shù)的單調(diào)性;

上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):

3

4

5

6

2.5

3

4

4.5

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域?yàn)閇1,2],則函數(shù)y=f( )定義域?yàn)閇4,8]
其中正確命題的序號(hào)是 . (填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】做一個(gè)無(wú)蓋的圓柱形水桶,若要使其體積是,且用料最省,則圓柱的底面半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱ABCA1B1C1的所有棱長(zhǎng)都為2,D為CC1的中點(diǎn).

(1)求證:AB1⊥平面A1BD;

(2)求二面角AA1DB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< ),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N*
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個(gè)值,都有f(x)=﹣f(2a﹣x),則稱f(x)為“準(zhǔn)奇函數(shù)”.給定下列函數(shù):①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“準(zhǔn)奇函數(shù)”是(寫出所有“準(zhǔn)奇函數(shù)”的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案