年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:吉林省吉林一中2011-2012學(xué)年高三階段驗(yàn)收試題數(shù)學(xué) 題型:解答題
(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,
.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有
< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大。
(III)求證:≤bn<2.
(文)如圖,|AB|=2,O為AB中點(diǎn),直線(xiàn)過(guò)B且垂直于AB,過(guò)A的動(dòng)直線(xiàn)與交于點(diǎn)C,點(diǎn)M在線(xiàn)段AC上,滿(mǎn)足=.
(I)求點(diǎn)M的軌跡方程;
(II)若過(guò)B點(diǎn)且斜率為- 的直線(xiàn)與軌跡M交于
點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)ΔBPQ為
銳角三角形時(shí)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
己知在銳角ΔABC中,角所對(duì)的邊分別為,且
(I )求角大;
(II)當(dāng)時(shí),求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點(diǎn),設(shè)直線(xiàn)過(guò)點(diǎn)且垂直于矩形所在平面,點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線(xiàn)段長(zhǎng)的取值范圍。
21.已知A,B是橢圓的左,右頂點(diǎn),,過(guò)橢圓C的右焦點(diǎn)F的直線(xiàn)交橢圓于點(diǎn)M,N,交直線(xiàn)于點(diǎn)P,且直線(xiàn)PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動(dòng)點(diǎn),R和Q的橫坐標(biāo)之和為2,RQ的中垂線(xiàn)交X軸于T點(diǎn)
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實(shí)數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由;
(2)如果當(dāng)時(shí),都有恒成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com