【題目】微信紅包是一款可以實(shí)現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下,對(duì)它們搶到的紅包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如表數(shù)據(jù):
型號(hào) | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個(gè)) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果搶到紅包個(gè)數(shù)超過(guò)5個(gè)的手機(jī)型號(hào)為“優(yōu)”,否則“非優(yōu)”,請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號(hào)中選出3種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷(xiāo)售.
①求在型號(hào)Ⅰ被選中的條件下,型號(hào)Ⅱ也被選中的概率;
②以X表示選中的手機(jī)型號(hào)中搶到的紅包超過(guò)5個(gè)的型號(hào)種數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2= .
【答案】解:(Ⅰ)根據(jù)題意列出2×2列聯(lián)表如下:
紅包個(gè)數(shù) 手機(jī)品牌 | 優(yōu) | 非優(yōu) | 合計(jì) |
甲品牌(個(gè)) | 3 | 2 | 5 |
乙品牌(個(gè)) | 2 | 3 | 5 |
合計(jì) | 5 | 5 | 10 |
,
所以沒(méi)有85%的理由認(rèn)為搶到紅包個(gè)數(shù)與手機(jī)品牌有關(guān).
(Ⅱ)①令事件C為“型號(hào) I被選中”;事件D為“型號(hào) II被選中”,
則 ,
所以 .
②隨機(jī)變量X的所有可能取值為1,2,3,
;
;
.
故X的分布列為:
X | 1 | 2 | 3 |
P |
|
|
|
∴數(shù)學(xué)期望E(X), .
【解析】(Ⅰ)根據(jù)題意列出2×2列聯(lián)表,根據(jù)2×2列聯(lián)表,代入求臨界值的公式,求出觀測(cè)值,利用觀測(cè)值同臨界值表進(jìn)行比較,K2=0.4<2.706,可得到?jīng)]有足夠的理由認(rèn)為手機(jī)系統(tǒng)與咻得紅包總金額的多少有關(guān);(Ⅱ)由題意求得X的取值1,2,3,運(yùn)用排列組合的知識(shí),可得各自的概率,求得X的分布列,由期望公式計(jì)算即可得到(X).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫(xiě)出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(2,2),N(5,-2),點(diǎn)P在x軸上,分別求滿足下列條件的點(diǎn)P的坐標(biāo).
(1)∠MOP=∠OPN(O是坐標(biāo)原點(diǎn)).
(2)∠MPN是直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn),M分別是AB,AD,AA1的中點(diǎn),又P,Q分別在線段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設(shè)平面MEF∩平面MPQ=l,則下列結(jié)論中不成立的是 ( )
A. l∥平面ABCD
B. l⊥AC
C. 平面MEF與平面MPQ不垂直
D. 當(dāng)x變化時(shí),l不是定直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒(méi)有人參加“演講團(tuán)”的不同參加方法數(shù)為( )
A.3600
B.1080
C.1440
D.2520
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知正方體ABCD-A1B1C1D1.
(1)求證:平面A1BD∥平面B1D1C.
(2)若E,F分別是AA1,CC1的中點(diǎn),求證:平面EB1D1∥平面FBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1: (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點(diǎn)的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并做出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒(méi)有分布在某個(gè)帶狀區(qū)域內(nèi),兩個(gè)變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型① 與模型;② 作為產(chǎn)卵數(shù)y和溫度x的回歸方程來(lái)建立兩個(gè)變量之間的關(guān)系.
溫度x/°C | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
t=x2 | 400 | 484 | 576 | 676 | 784 | 900 | 1024 |
z=lny | 1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
|
|
|
|
26 | 692 | 80 | 3.57 |
|
|
|
|
1157.54 | 0.43 | 0.32 | 0.00012 |
其中 , ,zi=lnyi , ,
附:對(duì)于一組數(shù)據(jù)(μ1 , ν1),(μ2 , ν2),(μn , νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計(jì)分別為: ,
(1)根據(jù)表中數(shù)據(jù),分別建立兩個(gè)模型下y關(guān)于x的回歸方程;并在兩個(gè)模型下分別估計(jì)溫度為30°C時(shí)的產(chǎn)卵數(shù).(C1 , C2 , C3 , C4與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計(jì)算分別為 .,請(qǐng)根據(jù)相關(guān)指數(shù)判斷哪個(gè)模型的擬合效果更好.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com