已知函數(shù)f(x)=3sin(2x-
π
6
)+2,
(1)求f(x)的增區(qū)間;
(2)求f(x)在區(qū)間[-
π
12
,
π
2
]上的最大、最小值及相應(yīng)的x值.
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)f(x)的增區(qū)間.
(2)根據(jù)x∈[-
π
12
π
2
],利用正弦函數(shù)的定義域和值域求得f(x)在區(qū)間[-
π
12
,
π
2
]上的最大、最小值及相應(yīng)的x值.
解答: 解:(1)令2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
,k∈z,求得kπ-
π
6
≤x≤kπ+
π
3

故函數(shù)f(x)的增區(qū)間為[-
π
6
+kπ ,
π
3
+kπ],k∈Z

(2)∵x∈[-
π
12
π
2
],2x-
π
6
∈[-
π
3
6
]
,∴當(dāng)2x-
π
6
=-
π
3
,即x=-
π
12
時,f(x)min=-
3
3
2
+2

當(dāng)2x-
π
6
=
π
2
,即x=
π
3
時,f(x)max=5.
點評:本題主要考查正弦函數(shù)的定義域和值域,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線過點(
5
,0),且與橢圓
x2
30
+
y2
5
=1有相同的焦點,則雙曲線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀右邊的程序框圖,運行相應(yīng)的程序,輸出的S的值是( 。
A、26B、40
C、57D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x+y≤1
x-y≤1
x≥-1
,則z=2x+y的最小值是( 。
A、2B、3C、-5D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2014的值是( 。
A、20142
B、2013×2012
C、2014×2015
D、2013×2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是單調(diào)遞增的等差數(shù)列,a1,a5是方程的x2-8x+12=0的兩根,
(Ⅰ)求{an}的通項公式;
(Ⅱ)令bn=2nan,求{bn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=xα的圖象過點(2,
2
),則f(4)的值是( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(π-α)=-
1
5
,tan(α-β)=
1
3
,則tanβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=5x,x∈{1,2,3,4,5}的圖象是( 。
A、一條直線B、兩條直線
C、拋物線D、幾個點

查看答案和解析>>

同步練習(xí)冊答案