【題目】某公司今年一月份推出新產(chǎn)品A,其成本價為492元/件,經(jīng)試銷調(diào)查,銷售量與銷售價的關系如下表:

銷售價(x/元件)

650

662

720

800

銷售量(y件)

350

333

281

200

由此可知,銷售量y(件)與銷售價x(元/件)可近似看作一次函數(shù)y=kx+b的關系(通常取表中相距較遠的兩組數(shù)據(jù)所得一次函數(shù)較為精確).
(1)寫出以x為自變量的函數(shù)y的解析式及定義域;
(2)試問:銷售價定為多少時,一月份銷售利潤最大?并求最大銷售利潤和此時的銷售量.

【答案】
(1)解:由題意知

解得k=﹣1,b=1000,∴y=﹣x+1000

由于y為非負整數(shù),所以0≤x≤1000


(2)解:設一月份的利潤為S元,由題意得S=(x﹣492)(1000﹣x)=﹣(x﹣746)2+64516

∴當x=746元/件時,一月份銷售收入 最大為64516元


【解析】(1)利用已知的函數(shù)關系式,代入數(shù)據(jù)求解即可.(2)推出利潤的函數(shù)的解析式,利用二次函數(shù)的性質(zhì)求解即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中a>0,且函數(shù)f(x)的最大值是
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)=lnf(x)﹣b有兩個零點,求實數(shù)b的取值范圍;
(3)若對任意的x∈(0,2),都有f(x)< 成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)=﹣
(1)求函數(shù)f(x)的解析式
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(Ⅰ)求分數(shù)在[50,60)的頻率及全班人數(shù);

(Ⅱ)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間矩形的高;

(Ⅲ)若要從分數(shù)在[80,100)之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在[90,100)之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點A(0,1),B(0,﹣1),C(1,0),動點P滿足:

(1)求動點P的軌跡方程,并說明方程表示的曲線類型;

(2)當k=2,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.

(1)求這次鉛球測試成績合格的人數(shù);

(2)若由直方圖來估計這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說明理由;

(3)若參加此次測試的學生中,有9人的成績?yōu)閮?yōu)秀,現(xiàn)在要從成績優(yōu)秀的學生中,隨機選出2人參加“畢業(yè)運動會”,已知a、b的成績均為優(yōu)秀,求兩人至少有1人入選的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2+x),g(x)=ln(2﹣x)
(1)判斷函數(shù)h(x)=f(x)﹣g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

直角坐標系中曲線的參數(shù)方程為參數(shù)),在以坐標原點為極點, 軸正半軸為極軸的極坐標系中, 點的極坐標,在平面直角坐標系中,直線經(jīng)過點,傾斜角為

(1)寫出曲線的直角坐標方程和直線的參數(shù)方程;

(2)設直線與曲線相交于兩點,求的值.

查看答案和解析>>

同步練習冊答案