A. | 若f(3)≥9成立,則對(duì)于任意k∈N*,均有f(k)≥k2成立 | |
B. | 若f(3)≥9成立,則對(duì)于任意k≥3,k∈N*,均有f(k)<k2成立 | |
C. | 若f(3)≥9成立,則對(duì)于任意k<3,k∈N*,均有f(k)<k2成立 | |
D. | 若f(3)=9成立,則對(duì)于任意k≥3,k∈N*,均有f(k)≥k2成立 |
分析 根據(jù)條件結(jié)合合情推理進(jìn)行判斷即可.
解答 解:A.若f(3)≥9成立,則f(4)≥16成立,則f(k)≥k2成立,(k≥3成立),則無法判斷當(dāng)k=1,2時(shí)是否成立,故A錯(cuò)誤,
B.若f(3)≥9成立,則f(4)≥16成立,則f(k)≥k2成立,(k≥3成立),故B錯(cuò)誤,
C.若f(3)≥9成立,則f(4)≥16成立,則f(k)≥k2成立,(k≥3成立),故C錯(cuò)誤,
D.若f(3)=9,滿足f(3)≥9成立,則f(4)≥16成立,則f(k)≥k2成立,(k≥3成立),故D正確,
故選:D
點(diǎn)評(píng) 本題主要考查合情推理的應(yīng)用,根據(jù)條件進(jìn)行遞推是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{65}{9}$,25] | B. | [$\frac{36}{5}$,25] | C. | [16,25] | D. | [9,25] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{2π}{3}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s甲2>s乙2 | B. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s甲2<s乙2 | ||
C. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s甲2>s乙2 | D. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s甲2<s乙2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}π{R^2}$ | B. | $\frac{{\sqrt{3}}}{2}π{R^2}$ | C. | πR2 | D. | $\frac{3}{4}π{R^2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com