18.給定正奇數(shù)n,數(shù)列{an}:a1,a2,…,an是1,2,…,n的一個排列,定義E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|為數(shù)列{an}:a1,a2,…,an的位差和.
(Ⅰ)當n=5時,則數(shù)列{an}:1,3,4,2,5的位差和為4;
(Ⅱ)若位差和E(a1,a2,…,an)=4,則滿足條件的數(shù)列{an}:a1,a2,…,an的個數(shù)為$\frac{{({n-2})({n+3})}}{2}$.;(用n表示)

分析 (Ⅰ)把a1,a3,a4,a2,a5分別代入E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|進行解答即可;
(Ⅱ)分兩種情況進行討論:當ai=i+1,ai+1=i,aj=j+1,aj+1=j,且{ai,ai+1}∩{aj,aj+1}=∅,其他項ak=k(其中k∉{i,i+1,j,j+1})時和當ai,ai+1,ai+2分別等于i+2,i+1,i或i+1,i+2,i或i+2,i+1,其他項ak=k(其中k∉{i,i+1,i+2});

解答 解:(I)E(1,3,4,2,5)=|1-1|+|3-2|+|4-3|+|2-4|+|5-5|=4;
(II)若數(shù)列{an}:a1,a2,…,an的位差和E(a1,a2,…,an)=4,有如下兩種情況:
情況一:當ai=i+1,ai+1=i,aj=j+1,aj+1=j,且{ai,ai+1}∩{aj,aj+1}=∅,
其他項ak=k(其中k∉{i,i+1,j,j+1})時,
有(n-3)+(n-4)+…+2+1=$\frac{(n-2)(n-3)}{2}$種可能;
情況二:當ai,ai+1,ai+2分別等于i+2,i+1,i或i+1,i+2,i或i+2,i+1,
其他項ak=k(其中k∉{i,i+1,i+2})時,有3(n-2)種可能;
綜上,滿足條件的數(shù)列{an}:a1,a2,…,an的個數(shù)為$\frac{(n-2)(n-3)}{2}$+3(n-2)=$\frac{{({n-2})({n+3})}}{2}$.
故答案為:(I)4;(II)$\frac{{({n-2})({n+3})}}{2}$

點評 本題考查了新定義“位差和”、等差數(shù)列的前n項和公式、分類討論思想方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.若函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)在其中一個周期內(nèi)的圖象上有一個最高點($\frac{π}{12}$,3)和一個最低點($\frac{7π}{12}$,-5),求該函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{(2-a)x+3a,x<1}\\{{{log}_2}x,x≥1}\end{array}}\right.$的值域為R,則實數(shù)a的取值范圍是(  )
A.(-1,2)B.[-1,2)C.(-∞,-1]D.{-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.給定橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),稱圓x2+y2=a2+b2為橢圓E的“伴隨圓”.
已知橢圓E中b=1,離心率為$\frac{\sqrt{6}}{3}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l與橢圓E交于A,B兩點,與其“伴隨圓”交于C,D兩點,當|CD|=$\sqrt{13}$時,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2$\sqrt{3}$,BC=6.
(1)求證:BD⊥平面PAC;
(2)求平面PBD與平面BDA的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的一點,且BF⊥平面ACE,AC與BD交于點G.
(1)求證:AE⊥平面BCE;
(2)求證:AE∥平面BFD;
(3)求三棱錐C-BFG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=$\frac{3}{2}$,BC=$\frac{1}{2}$,橢圓以A、B為焦點且經(jīng)過點D.
(Ⅰ)建立適當?shù)闹苯亲鴺讼,求橢圓的方程;
(Ⅱ)若點E滿足$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{AB}$,問是否存在直線l與橢圓交于M、N兩點,且|ME|=|NE|?若存在,求出直線l與AB夾角θ的正切值的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)f(x)=x-alnx.(a≠0)
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)≥a2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\sqrt{10}cosα\\ y=\sqrt{10}sinα\end{array}\right.$(α為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為$ρcos({θ-\frac{π}{4}})=2\sqrt{2}$
(1)求曲線C的普通方程和直線l的直角坐標方程;
(2)設(shè)點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

查看答案和解析>>

同步練習冊答案