分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)函數(shù)的導(dǎo)數(shù),通過討論m的范圍得到函數(shù)的值域,從而確定m的具體范圍即可.
解答 解:(1)f(x)=ex-ex-1,
h(x)=f(x)-g(x)=ex-2x-1,h′(x)=ex-2,
由h′(x)>0,得x>ln2,由h′(x)<0,解得:x<ln2,
故函數(shù)h(x)在(ln2,+∞)遞增,在(-∞,ln2)遞減;
(2)f(x)=ex-e,
x<1時,f′(x)<0,f(x)在(-∞,1)遞減,
x>1時,f′(x)>0,f(x)在(1,+∞)遞增,
m≤1時,f(x)在(-∞,m]遞減,值域是[em-em-1,+∞),
g(x)=(2-e)x在(m,+∞)遞減,值域是(-∞,(2-e)m),
∵F(x)的值域是R,故em-em-1≤(2-e)m,
即em-2m-1≤0,(*),
由(1)m<0時,h(x)=em-2m-1>h(0)=0,故(*)不成立,
∵h(yuǎn)(m)在(0,ln2)遞減,在(ln2,1)遞增,且h(0)=0,h(1)=e-3<0,
∴0≤m≤1時,h(m)≤0恒成立,故0≤m≤1;
m>1時,f(x)在(-∞,1)遞減,在(1,m]遞增,
故函數(shù)f(x)=ex-ex-1在(-∞,m]上的值域是[f(1),+∞),即[-1,+∞),
g(x)=(2-e)x在(m,+∞)上遞減,值域是(-∞,(2-e)m),
∵F(x)的值域是R,∴-1≤(2-e)m,即1<m≤$\frac{1}{e-2}$,
綜上,m的范圍是[0,$\frac{1}{e-2}$];
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想、考查不等式的證明,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com