【題目】某品牌茶壺的原售價為80元/個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購買一個茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;…,一次購買的茶壺數(shù)每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個;乙店一律按原價的75%銷售.現(xiàn)某茶社要購買這種茶壺x個,如果全部在甲店購買,則所需金額為y1元;如果全部在乙店購買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)該茶社去哪家茶具店購買茶壺花費較少?
科目:高中數(shù)學 來源: 題型:
【題目】解答
(1)已知冪函數(shù)f(x)=(﹣2m2+m+2)x﹣2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x﹣1=3(x>1),求x2﹣x﹣2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為,頂點為,且.
(1)求橢圓的方程;
(2)是橢圓上除頂點外的任意點,直線交軸于點,直線交于點.設的斜率為, 的斜率為,試問是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本市某玩具生產公司根據(jù)市場調查分析,決定調整產品生產方案,準備每天生產, , 三種玩具共100個,且種玩具至少生產20個,每天生產時間不超過10小時,已知生產這些玩具每個所需工時(分鐘)和所獲利潤如表:
玩具名稱 | |||
工時(分鐘) | 5 | 7 | 4 |
利潤(元) | 5 | 6 | 3 |
(Ⅰ)用每天生產種玩具個數(shù)與種玩具表示每天的利潤(元);
(Ⅱ)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( )x的圖象與函數(shù)g(x)的圖象關于直線y=x對稱,令h(x)=g(1﹣|x|),則關于h(x)有下列命題:
①h(x)的圖象關于原點對稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上、下焦點分別為,上焦點到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=.
(I)若P是橢圓C上任意一點,求的取值范圍;
(II)設過橢圓C的上頂點A的直線與橢圓交于點B(B不在y軸上),垂直于的直線與交于點M,與軸交于點H,若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線方程為.
(1)求該雙曲線的實軸長、虛軸長、離心率;
(2)若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體是由三棱柱截去一部分后而成, 是的中點.
(Ⅰ)若在上,且為的中點,求證:直線//平面
(Ⅱ) 若平面, , 求點到面的距離;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax+(k﹣1)a﹣x(a>且a≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)>0,試判斷函數(shù)單調性,并求使不等式f(x2+x)+f(t﹣2x)>0恒成立的t的取值范圍;
(3)若f(1)= ,設g(x)=a2x+a﹣2x﹣2mf(x),g(x)在[1,+∞)上的最小值為﹣1,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com