CA=CB=CD=BD=2,AB=AD=.
(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的大小;
(3)求點(diǎn)E到平面ACD的距離.
(1)證明:連結(jié)OC.
∵BO=DO,AB=AD,∴AO⊥BD.
∵BO=DO,BC=CD,∴CO⊥BD.
在△AOC中,由已知可得AO=1,CO=.而AC=2,
∴AO2+CO2=AC2.∴∠AOC=90°,即AO⊥OC.
∵BD∩OC=O,
∴AO⊥平面BCD.
(2)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,
由E為BC的中點(diǎn)知ME∥AB,OE∥DC,
∴直線OE與EM所成的銳角就是異面直線AB與CD所成的角.
在△OME中,
EM=AB=,OE=DC=1,
∵OM是直角△AOC斜邊AC上的中線,
∴OM=AC=1,cos∠OEM=,
∴異面直線AB與CD所成角的大小為arccos.
(3)解:設(shè)點(diǎn)E到平面ACD的距離為h,
∵VE—ACD=VA—CDE,∴h·S△ACD=·AO·S△CDE.
在△ACD中,CA=CD=2,AD=,
∴S△ACD=.
而AO=1,S△CDE=,
∴h=.
∴點(diǎn)E到平面ACD的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的大小;
(3)求點(diǎn)E到平面ACD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求證:AO⊥平面BCD;
(2)求異面直線AB與CD所成角的大小;
(3)求點(diǎn)E到平面ACD的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com