求過點(diǎn)P(3,),Q(,5)且焦點(diǎn)在坐標(biāo)軸上的雙曲線的標(biāo)準(zhǔn)方程.

解:設(shè)雙曲線方程為mx2+ny2=1(m·n<0),

∵P、Q兩點(diǎn)在雙曲線上,∴解得

∴所求雙曲線標(biāo)準(zhǔn)方程為=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=2py(p>0)上一點(diǎn)P的坐標(biāo)為(x0,y0)及直線y=-
p
2
上一點(diǎn)Q(m,-
p
2
)
,過點(diǎn)Q作拋物線的兩條切線QA,QB(A,B為切點(diǎn)).
(1)求過點(diǎn)P與拋物線相切的直線l的方程;
(2)求直線AB的方程.
(3)當(dāng)點(diǎn)Q在直線y=-
p
2
上變化時(shí),求證:直線AB過定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足
F1M
F2M
=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
2

(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),P(0,-
3
3
)
;問A、B兩點(diǎn)能否關(guān)于過點(diǎn)P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為:x2+y2=4
(1)求過點(diǎn)P(2,1)且與圓C相切的直線l的方程;
(2)直線l過點(diǎn)D(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2
3
,求直線l的方程;
(3)圓C上有一動點(diǎn)M(x0,y0),
ON
=(0,y0),若向量
OQ
=
OM
+
ON
,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)過點(diǎn)A(-1,-2)且與橢圓
x2
6
+
y2
9
=1
的兩個(gè)焦點(diǎn)相同;
(2)過點(diǎn)P(
3
,-2),Q(-2
3
,1).

查看答案和解析>>

同步練習(xí)冊答案