有時可用函數(shù)

 

描述學(xué)習(xí)某學(xué)科知識的掌握程度.其中表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

(1)證明:當(dāng)x 7時,掌握程度的增長量f(x+1)- f(x)總是下降;

(2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],

(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

證明(1)當(dāng)時,

而當(dāng)時,函數(shù)單調(diào)遞增,且

故函數(shù)單調(diào)遞減

當(dāng)時,掌握程度的增長量總是下降

(2)有題意可知

整理得

解得…….13分

由此可知,該學(xué)科是乙學(xué)科……………..14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有時可用函數(shù)f(x)=
0.1+15ln
a
a-x
x≤6
x-4.4
x-4
x>6
,描述學(xué)習(xí)某學(xué)科知識的掌握程度.其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(x∈N*),f(x)表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).
(1)證明:當(dāng)x≥7時,掌握程度的增長量f(x+1)-f(x)總是下降;
(2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分。有時可用函數(shù)

     

描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān)。

(1)       證明:當(dāng)時,掌握程度的增加量總是下降;

(2)       根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,。當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(12分)(2009年高考上海卷文、理)有時可用函數(shù)f(x)=描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(x∈N*),f(x)表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

   (1)證明:當(dāng)x≥7時,掌握程度的增加量f(x+1)-f(x)總是下降;

   (2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121),(121,127),(127,133).當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年陜西省高三第一次月考文科數(shù)學(xué)卷 題型:解答題

有時可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識的掌握程度.其中表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān)

(1)證明:當(dāng)x 7時,掌握程度的增長量f(x+1)- f(x)總是下降;

(2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127]

(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

 

查看答案和解析>>

同步練習(xí)冊答案