已知頂點在原點O,焦點在x軸上的拋物線過點(3,
6
)

(1)求拋物線的標準方程;
(2)若拋物線與直線y=x-2交于A、B兩點,求證:kOA•kOB=-4.
分析:(1)設出拋物線標準方程,代入點的坐標,可求拋物線的方程;
(2)將直線方程代入拋物線方程,利用韋達定理,結(jié)合斜率公式,可得結(jié)論.
解答:(1)解:設拋物線的標準方程為y2=2px(p>0),則
∵拋物線過點(3,
6
)
,∴6=2p×3,∴p=1,
∴拋物線的標準方程為y2=2x;
(2)證明:設A(x1,y1),B(x2,y2),直線y=x-2代入y2=2x,整理可得x2-6x+4=0
∴x1+x2=6,x1x2=4,
∴kOA•kOB=
y1y2
x1x2
=
(x1-2)(x2-2)
x1x2
=
x1x2-4(x1+x2)+4
4
=-4.
點評:本題考查拋物線的標準方程,考查直線與拋物線的位置關(guān)系,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2-9x=0與頂點在原點O,焦點在x軸上的拋物線交于A,B兩點,△AOB的垂心恰為拋物線的焦點,求拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知頂點為原點O,焦點在x軸上的拋物線,其內(nèi)接△ABC的重心是焦點F,若直線BC的方程為4x+y-20=0.
(1)求拋物線方程;
(2)軸上是否存在定點M,使過M的動直線與拋物線交于P,Q兩點,滿足∠POQ=90°?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知頂點為原點O,焦點在x軸上的拋物線,其內(nèi)接△ABC的重心是焦點F,若直線BC的方程為4x+y-20=0.
(1)求拋物線方程;
(2)軸上是否存在定點M,使過M的動直線與拋物線交于P,Q兩點,滿足∠POQ=90°?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復習必備(第69課時):第八章 圓錐曲線方程-圓錐曲線的應用(2)(解析版) 題型:解答題

已知頂點為原點O,焦點在x軸上的拋物線,其內(nèi)接△ABC的重心是焦點F,若直線BC的方程為4x+y-20=0.
(1)求拋物線方程;
(2)軸上是否存在定點M,使過M的動直線與拋物線交于P,Q兩點,滿足∠POQ=90°?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案