分析 (1)利用線面垂直的性質可證AP⊥CD,又ABCD為矩形,AD⊥CD,利用線面垂直的判定定理可證CD⊥平面PAD,利用面面垂直的判定可證平面PAD⊥平面ABCD.
(2)連接AC,BD交于點O,連接OE,OF,由ABCD為矩形,O點為AC中點,可證OE∥PA,進而可證OE∥平面PAD,同理可得:OF∥平面PAD,通過證明平面OEF∥平面PAD,即可證明EF∥平面PAD.
解答 證明:(1)∵AP⊥平面PCD,CD?平面PCD,
∴AP⊥CD,
∵ABCD為矩形,∴AD⊥CD,…2分
又∵AP∩AD=A,AP?平面PAD,AD?平面PAD,
∴CD⊥平面PAD,…4分
∵CD?平面ABCD,
∴平面PAD⊥平面ABCD…6分
(2)連接AC,BD交于點O,連接OE,OF,
∵ABCD為矩形,∴O點為AC中點,
∵E為PC中點,
∴OE∥PA,
∵OE?平面PAD,PA?平面PAD,
∴OE∥平面PAD,…8分
同理可得:OF∥平面PAD,…10分
∵OE∩OF=O,
∴平面OEF∥平面PAD,…12分
∵EF?平面OEF,
∴EF∥平面PAD…14分
點評 本題主要考查了線面垂直的判定和性質,面面垂直的判定,線面平行的判定與面面平行的性質的綜合應用,考查了空間想象能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f′(x)=2e2x | B. | f′(x)=$\frac{(2x-1){e}^{2x}}{{x}^{2}}$ | C. | f′(x)=$\frac{2{e}^{2x}}{x}$ | D. | f′(x)=$\frac{(x-1){e}^{2x}}{{x}^{2}}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com