【題目】已知正項(xiàng)等比數(shù)列,等差數(shù)列滿足,且的等比中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù),的等比中項(xiàng)列出關(guān)于公比 、公差的方程組,解方程組可得的值,從而可得數(shù)列的的通項(xiàng)公式;(2)由(1)可知,所以,對(duì)分奇數(shù)、偶數(shù)兩種情況討論,分別利用分組求和法,錯(cuò)位相減求和法,結(jié)合等差數(shù)列求和公式與等比數(shù)列求和公式求解即可.

試題解析:(1)設(shè)等比數(shù)列的公比為,等差數(shù)列的公差為

的等比中項(xiàng)可得:

,則:,解得

因?yàn)?/span>中各項(xiàng)均為正數(shù),所以,進(jìn)而.

.

(2)設(shè)

設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,

當(dāng)為偶數(shù)時(shí),,

當(dāng)為奇數(shù)時(shí), ,

①,

②,

-得:

,

,因此, 綜上:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過(guò)點(diǎn)、分別作圓的切線,切點(diǎn)分別為、.

1)若點(diǎn)在點(diǎn)位置時(shí),求此時(shí)切線的方程;

2)若點(diǎn)、滿足,,問(wèn)直線上是否存在點(diǎn),使得?如果存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下表:

上年度出險(xiǎn)次數(shù)

0

1

2

3

保費(fèi)(元)

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:

出險(xiǎn)次數(shù)

0

1

2

3

頻數(shù)

140

40

12

6

2

該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下表:

出險(xiǎn)序次

第1次

第2次

第3次

第4次

第5次及以上

賠付金額(元)

0

將所抽樣本的頻率視為概率。

(1)求本年度—續(xù)保人保費(fèi)的平均值的估計(jì)值;

(2)求本年度—續(xù)保人所獲賠付金額的平均值的估計(jì)值;

(3)據(jù)統(tǒng)計(jì)今年有100萬(wàn)投保人進(jìn)行續(xù)保,若該公司此險(xiǎn)種的純收益不少于900萬(wàn)元,求的最小值(純收益=總?cè)氡n~-總賠付額)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(為常數(shù))

(1)若

①求函數(shù)在區(qū)間上的最大值及最小值。

②若過(guò)點(diǎn)可作函數(shù)的三條不同的切線,求實(shí)數(shù)的取值范圍。

(2)當(dāng)時(shí),不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)討論的單調(diào)性;

(II)若恒成立,證明:當(dāng)時(shí),.

(III)在(II)的條件下,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)的最小值為﹣4,且關(guān)于x的不等式fx)≤0的解集為{x|1x3,xR}

1)求函數(shù)fx)的解析式;

2)求函數(shù)gx的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S-ABC中,SA ⊥底面ABCAC=AB=SA=2,ACAB,D,E分別是AC,BC的中點(diǎn),FSE上,且SF=2FE.

(Ⅰ)求異面直線AFDE所成角的余弦值;

(Ⅱ)求證:AF⊥平面SBC

(Ⅲ)設(shè)G為線段DE的中點(diǎn),求直線AG與平面SBC所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知z為虛數(shù),z+為實(shí)數(shù).

(1)z-2為純虛數(shù),求虛數(shù)z.

(2)|z-4|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案