如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))
精英家教網(wǎng)

精英家教網(wǎng)
(Ⅰ)過(guò)F作l的垂線(xiàn)交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線(xiàn)為x軸建立平面直角坐標(biāo)系如圖1,
并設(shè)|KF|=p,則可得該拋物線(xiàn)的方程為 y2=2px(p>0);
(Ⅱ)該命題為真命題,證明如下:
如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線(xiàn)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,
∵PQ是拋物線(xiàn)過(guò)焦點(diǎn)F的弦,
∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線(xiàn),
∴|MD=
1
2
(|PA|+|QB|)=
1
2
(|PF|+|QF|)=
|PQ|
2

∵M(jìn)是以PQ為直徑的圓的圓心,
∴圓M與l相切.
(Ⅲ)選擇橢圓類(lèi)比(Ⅱ)所寫(xiě)出的命題為:
“過(guò)橢圓一焦點(diǎn)F的直線(xiàn)與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線(xiàn)l相離”.
此命題為真命題,證明如下:
證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,
則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,
|PF|
PA
=e
,∴|PA|=
|PF|
e
,同理得|QB|=
|QF|
e

∵M(jìn)D是梯形APQB的中位線(xiàn),
∴|MD|=
|PA|+|QB|
2
=
1
2
(
|PF|
e
+
|QF|
e
)=
|PQ|
2e
|PQ|
2

∴圓M與準(zhǔn)線(xiàn)l相離.
選擇雙曲線(xiàn)類(lèi)比(Ⅱ)所寫(xiě)出的命題為:
“過(guò)雙曲線(xiàn)一焦點(diǎn)F的直線(xiàn)與雙曲線(xiàn)交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線(xiàn)相應(yīng)的準(zhǔn)線(xiàn)l相交”.
此命題為真命題,證明如下:
證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,
則e>1,P、Q、M在相應(yīng)準(zhǔn)線(xiàn)l上的射影分別為A、B、D,
|PF|
PA
=e
,∴|PA|=
|PF|
e
,同理得|QB|=
|QF|
e

∵M(jìn)D是梯形APQB的中位線(xiàn),
∴|MD|=
|PA|+|QB|
2
=
1
2
(
|PF|
e
+
|QF|
e
)=
|PQ|
2e
|PQ|
2
,
∴圓M與準(zhǔn)線(xiàn)l相交.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•湛江二模)如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓

C過(guò)F的切線(xiàn)交于點(diǎn)P和點(diǎn)Q,則P、Q必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:

“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于P、Q兩點(diǎn),

則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)

問(wèn):此命題是否正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并

證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為評(píng)分依據(jù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湛江二模 題型:解答題

如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年廣東省湛江市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓C過(guò)F的切線(xiàn)相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)問(wèn):此命題是正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為平分依據(jù))

查看答案和解析>>

同步練習(xí)冊(cè)答案