【題目】已知點,,圓C的方程為,過點A的直線l與圓C相切,點P為圓C上的動點.

1)求直線l的方程;

2)求面積的最大值.

【答案】12

【解析】

1)討論直線的斜率是否存在.當(dāng)斜率不存在時,易知不合題意.當(dāng)斜率存在時,將圓的一般方程化為標(biāo)準(zhǔn)方程,結(jié)合點到直線距離公式及切線性質(zhì),即可求得斜率,進而得切線方程.

2)由兩點間距離公式可得,同時可得直線的方程.求得圓心到直線的距離,即可求得圓上的點到直線的最大值,即可求得面積的最大值.

1)①當(dāng)直線的斜率不存在時,的方程為,易知此直線與圓C相交,不合題意;

②當(dāng)直線的斜率存在時,設(shè)的方程為,

C的圓心,半徑,

因為直線與圓C相切,

所以圓心到直線的距離.

,解得

所以直線的方程為.

綜上,直線的方程為.

2)由題意,,直線的方程為,

則圓心到直線的距離.

所以點P到直線的距離的最大值為,

所以的面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四個點,,,中有3個點在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過原點的直線與橢圓交于,兩點(,不是橢圓的頂點),點在橢圓上,且,直線軸、軸分別交于、兩點,設(shè)直線,的斜率分別為,證明:存在常數(shù)使得,并求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是函數(shù),,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將)的圖像上所有的點( )

A. 向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

B. 向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

C. 向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

D. 向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過橢圓的右焦點,交橢圓于點,,點為橢圓的左焦點,的周長為..

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與直線的傾斜角互補,且交橢圓于點、,求證:直線與直線的交點在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,直線)與橢圓交于,兩點(點軸的上方).

1)若,求的面積;

2)是否存在實數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,且,,點G,H分別為邊,的中點,點M是線段上的動點.

1)求證:;

2)若,當(dāng)三棱錐的體積最大時,求點C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算面積的最大值,并比較哪個方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,側(cè)面底面,為線段上一點,且滿足.

(1)若的中點,求證:;

(2)當(dāng)最小時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標(biāo)柱上最少需要移動的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

同步練習(xí)冊答案