精英家教網 > 高中數學 > 題目詳情
是兩條異面直線,是兩個不同平面,,,,則
A.分別相交B.都不相交
C.至多與中一條相交D.至少與中的一條相交
D

試題分析:如果都不相交,則都平行,所以直線平行,與直線異面矛盾,所以至少與中的一條相交.
點評:判斷空間直線、平面間的位置關系,要緊扣相應的判定定理和性質定理,發(fā)揮空間想象能力.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

、是兩條不同的直線,、是兩個不同的平面,則下列正確的個數為:( )
①若,則;  ②若,則;
③若,則;④若,則
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,在棱長為2的正方體內(含正方體表面)任取一點,則的概率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=

(1)求直線D1B與平面ABCD所成角的大;
(2)求證:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知m、n為兩條不同的直線,為兩個不同的平面,下列四個命題中,其中正確的命題是    .(填寫正確命題的序號)
;②若;
;④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=2,EAB的中點,現將△ ADE沿直線DE翻折成△ADE,使平面ADE⊥平面BCDE,F為線段AD的中點.

(1)求證:EF//平面ABC;
(2)求直線AB與平面ADE所成角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖:四棱錐中,,,,

(Ⅰ)證明: 平面;
(Ⅱ)在線段上是否存在一點,使直線與平面成角正弦值等于,若存在,指出點位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,是兩條不同的直線,,是兩個不同的平面,則下列正確命題的序號
     
①.若  ,, 則   ;      ②.若,,則   ;
③. 若  ,,則   ;      ④.若   ,,則  

查看答案和解析>>

同步練習冊答案