已知圓C:x2+y2-4x-6y+9=0.
(I)若點Q(x,y)在圓C上,求x+y的最大值與最小值;
(II)已知過點P(3,2)的直線l與圓C相交于A、B兩點,若P為線段AB中點,求直線l的方程.

解:圓C:(x-2)2+(y-3)2=4,∴圓心C(2,3),半徑r=2,
(I)設(shè) x+y=d,則由圓心到直線x+y=d 的距離等于半徑得
∴x+y最大值為,最小值
(II)依題意知點P在圓C內(nèi),若P為線段AB中點時,則CP⊥AB,∵kCP=-1,∴kAB=1,
由點斜式得到直線l的方程:y-2=x-3,即 x-y-1=0.
分析:(I) 設(shè) x+y=d,d取最值時,圓和直線 x+y=d相切,則由圓心到直線x+y=d 的距離等于半徑求得d 值,即為所求.
(II) 由題意得 CP⊥AB,由 kCP=-1,可得 kAB=1,點斜式可求直線l的方程.
點評:本題考查圓的標(biāo)準(zhǔn)方程,點到直線的距離公式的應(yīng)用,兩直線垂直的性質(zhì)以及直線方程的點斜式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當(dāng)r=1時,試用k表示點B的坐標(biāo);
(2)當(dāng)r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊答案