分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)可得a+b=5,然后利用基本不等式求得$\frac{1}{a-1}+\frac{4}{b-2}$的最小值.
解答 解:由約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{3x-y-2=0}\end{array}\right.$,解得A(1,1).
由z=ax+by(a>0,b>0),得y=-$\frac{a}$x+$\frac{z}$,
由圖可知,zmax=a+b=5.可得a-1+b-2=2
∴$\frac{1}{a-1}+\frac{4}{b-2}$=$\frac{1}{2}$($\frac{1}{a-1}+\frac{4}{b-2}$)(a-1+b-2)=$\frac{1}{2}$(5+$\frac{b-2}{a-1}$+$\frac{4(a-1)}{b-2}$≥$\frac{1}{2}$(5+2$\sqrt{\frac{b-2}{a-1}×\frac{4(a-1)}{b-2}}$)=$\frac{9}{2}$.
當(dāng)且僅當(dāng)4a=b+2,并且a+b=5即a=$\frac{7}{5}$,b=$\frac{18}{5}$時上式等號成立.
∴$\frac{1}{a-1}+\frac{4}{b-2}$的最小值為$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1) | B. | (-1,1) | C. | (-1,0] | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | C. | 直角三角形 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com