【題目】已知{an}是公差不為零的等差數(shù)列,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項;
(2)設(shè)數(shù)列{an}的前n項和為Sn , 令 ,求數(shù)列{bn}的前n項和Tn

【答案】
(1)解:由題設(shè)知公差d≠0,

由a1=1,a1,a3,a9成等比數(shù)列得:

,

即(1+2d)2=1(1+8d),

解得d=1或d=0(舍去),

故{an}的通項an=1+(n﹣1)×1=n


(2)解:∵ ,

=


【解析】(1)求數(shù)列{an}的通項只需求得其公差即可,設(shè)出公差,用公差表示a1,a3,a9,并根據(jù)其成等比數(shù)列列式求得公差,進而求得數(shù)列{an}的通項公式;(2)根據(jù)數(shù)列{an}的通項公式求得Sn,進而求得 bn,再根據(jù) bn的特點求得 Tn.
【考點精析】本題主要考查了等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關(guān)知識點,需要掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義域為的奇函數(shù),, .

(1)寫出函數(shù)的解析式.

(2)若方程恰有3個不同的解,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(, 是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口的中點, 分別落在線段.已知米, 米,記.

1試將污水凈化管道的總長度 (的周長)表示為的函數(shù),并求出定義域;

2)問當取何值時,污水凈化效果最好?并求出此時管道的總長度.

(提示: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.(14分)

(1)此方程表示圓,求m的取值范圍;

(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;

(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 底面, , .

1)求直線所成角的大;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .

(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;

(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的個數(shù)是( )
①函數(shù)f(x)=2x﹣x2的零點有2個;
②函數(shù)y=sin(2x+ )sin( ﹣2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
dx=
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則( )

A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱函數(shù)的一個上界.已知函數(shù) .

(1)若函數(shù)為奇函數(shù),求實數(shù)的值;

(2)在第(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案