15.已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的外接球半徑為( 。
A.$\frac{15}{2}$cmB.$\frac{15}{4}$cmC.$\frac{5\sqrt{41}}{2}$cmD.$\frac{5\sqrt{41}}{4}$cm

分析 由三視圖可知:原幾何體是一個四棱錐P-ABCD,其底面是一個邊長為2的正方形,其高PH=2.據(jù)此即可計(jì)算出外接球的半徑.

解答 解:由三視圖可知:原幾何體是一個四棱錐S-ABCD,其底面是一個邊長為20的正方形,其高為20.
設(shè)O為外接球的球心,OE=x,則OA=$\sqrt{{x}^{2}+(10\sqrt{2})^{2}}$=OS=$\sqrt{100+(20-x)^{2}}$
⇒x=$\frac{15}{2}$,
∴其外接球的半徑R=$\frac{5\sqrt{41}}{2}$.
故選:C.

點(diǎn)評 本題考查了由三視圖求幾何體外接球的半徑,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征并求得外接球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義max{b,c}表示實(shí)數(shù)b,c中的較大的數(shù).已知數(shù)列{an}滿足a1=a(a>0),a2=1,an+2=$\frac{2max\{{a}_{n+1},2\}}{{a}_{n}}$(n∈N*),若a2015=4a,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,b2+S3=21,b3=S2
(1)求an與bn;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求使不等式4Tn>S15成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知長方體ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=4,A,B,C,D四點(diǎn)在球O上,且球O與底面A1B1C1D1相切,則球O的表面積為( 。
A.$\frac{81}{4}$πB.$\frac{9}{4}$πC.$\frac{9}{2}$πD.$\frac{81}{16}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正數(shù)x,y滿足x2+4y2+x+2y≤2-4xy,則$\frac{1}{x}+\frac{1}{y}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過點(diǎn)A(1,0),且離心率為$\sqrt{3}$
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.記a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,則四個數(shù)的大小關(guān)系是(  )
A.a<c<b<dB.c<d<a<bC.b<d<c<aD.d<b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.曲線y=x+2與y=x2所圍成的封閉圖形的面積s=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,角A、B、C所對邊的長為a、b、c,設(shè)AD為BC邊上的高,且AD=a,則$\frac{c}$+$\frac{c}$的最大值是( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.4

查看答案和解析>>

同步練習(xí)冊答案