樣本中共有5個個體,其值分別為.若該樣本的平均值為1,則樣本方差為
A.B.C.D.
D

試題分析:根據(jù)題意,由于樣本中共有5個個體,其值分別為.若該樣本的平均值為1,則可知a+0+1+2+3=5,a=-1,那么方差為,故答案為D.
點評:主要是考查了數(shù)據(jù)的特征數(shù),均值和方差的求解,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺蒸汽輪機為動力,為保證航母的動力安全性,科學家對蒸汽輪機進行了170余項技術改進,增加了某項新技術,該項新技術要進入試用階段前必須對其中的三項不同指標甲、乙、丙進行通過量化檢測。假如該項新技術的指標甲、乙、丙獨立通過檢測合格的概率分別為、。指標甲、乙、丙合格分別記為4分、2分、4分;若某項指標不合格,則該項指標記0分,各項指標檢測結果互不影響。
(I)求該項技術量化得分不低于8分的概率;
(II)記該項新技術的三個指標中被檢測合格的指標個數(shù)為隨機變量X,求X的分布列與數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某社團組織名志愿者利用周末和節(jié)假日參加社會公益活動,活動內(nèi)容是:1、到各社區(qū)宣傳慰問,倡導文明新風;2、到指定的醫(yī)院、福利院做義工,幫助那些需要幫助的人.各位志愿者根據(jù)各自的實際情況,選擇了不同的活動項目,相關的數(shù)據(jù)如下表所示:
 
宣傳慰問
義工
總計
20至40歲
11
16
27
大于40歲
15
8
23
總計
26
24
50
(1) 分層抽樣方法在做義工的志愿者中隨機抽取6名,年齡大于40歲的應該抽取幾名?
(2) 上述抽取的6名志愿者中任取2名,求選到的志愿者年齡大于40歲的人數(shù)的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為.
(1)求乙至多擊中目標2次的概率;
(2)記甲擊中目標的次數(shù)為Z,求Z的分布列、數(shù)學期望和標準差.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判,設各局中雙方獲勝的概率均為各局比賽的結果都相互獨立,第局甲當裁判.
(I)求第局甲當裁判的概率;
(II)求前局中乙恰好當次裁判概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質量;
(3)分析哪個車間的技術水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某校高三學生的數(shù)學校本課程選課過程中,規(guī)定每位同學只能選一個科目。已知某班第一小組與第二小組各 有六位同學選擇科目甲或科 目乙,情況如下表:
 
科目甲
科目乙
總計
第一小組
1
5
6
第二小組
2
4
6
總計
3
9
12
現(xiàn)從第一小組、第二小 組中各任選2人分析選課情況.
(1)求選出的4 人均選科目乙的概率;
(2)設為選出的4個人中選科目甲的人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題14分)口袋內(nèi)有)個大小相同的球,其中有3個紅球和個白球.已知從
口袋中隨機取出一個球是紅球的概率是,且。若有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次取球中恰好取到兩次紅球的概率大于。
(Ⅰ)求;
(Ⅱ)不放回地從口袋中取球(每次只取一個球),取到白球時即停止取球,記為第一次取到白球時的取球次數(shù),求的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(12分)設是一個離散型隨機變量,其分布列如下表,試求隨機變量的期望與方差
ξ
-1
0
1
P

1-2q[
q2
   

查看答案和解析>>

同步練習冊答案