如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,O是底面ABCD的對(duì)角線的交點(diǎn),A1A=A1C,A1A⊥BC.
(1)證明:平面A1BC∥平面CD1B1
(2)證明:A1O⊥平面ABC.
考點(diǎn):直線與平面垂直的判定,平面與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)運(yùn)用幾何性質(zhì)判斷A1B∥B1C,A1D∥B1C.再運(yùn)用定理判斷.(2)運(yùn)用性質(zhì)判斷出DB⊥平面A1AO,BD⊥A1O,A1O⊥AC,再運(yùn)用判定定理證明.
解答: 證明:(1)易知AA1∥DD1,


∵底面ABCD為菱形,∴AB∥CD,
又∵AA1∩AB=A,CD∩DD1=D,
∴平面AA1BB1∥平面DC1CD1
又A1B?平面AA1BB1,CD1?平面DC1CD1
平面A1BCD1∩平面AA1BB1=A1B,
平面ABCBD1∩平面DC1CD1=D1C,
∴A1B∥B1C,
同理可證:A1D∥B1C.
又∵A1D∩A1B=A1,D1C∩B1C=C,
∴平面A1BC∥平面CD1B1;
(2)∵底面ABCD為菱形,∴AC⊥BD,
又∵AA1⊥BD,AA1∩AC=A,∴DB⊥平面A1AO,
∵A1O?平面A1AO,∴BD⊥A1O,
由∵A1A=A1C,∴A1O⊥AC,
∵AC∩BD=O,
∴A1O⊥平面ABC.
點(diǎn)評(píng):本題考查了空間幾何題 的性質(zhì),運(yùn)用判斷直線,平面的平行、垂直關(guān)系.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)An(n,an)(x∈N*)都在函數(shù)y=ax(a>0且a≠1)的圖象上,則(  )
A、a2+a8>2a5
B、a2+a8<2a5
C、a2+a8=2a5
D、a2+a8與2a5的大小與a有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
1+sina
1-sina
-
1-sina
1+sina

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知cosA=
3
5
,2cosC=sinB.
(1)求tanC的值;
(2)若a=
10
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x-1
,x∈[2,6].
(1)證明:f(x)是定義域上的減函數(shù);
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)U=R全集,集合A={y|y=x2+1},B={x|x2-2x-3≥0},則A∩(∁UB)=( 。
A、{x|x≤-1}
B、{x|x≤1}
C、{x|-1<x≤1}
D、{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線ρcosθ-ρsinθ+a=0與圓
x=-1+3cosθ
y=2+3sinθ
(θ為參數(shù))有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a3a8+a5a6=2e5,則lna1+lna2+…+lna10=( 。
A、20B、25C、30D、50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)信中學(xué)某研究性學(xué)習(xí)小組經(jīng)過(guò)調(diào)查發(fā)現(xiàn),提高廣州大橋的車(chē)輛通行能力可改善整個(gè)廣州大道的交通狀況,在一般情況下,橋上車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù).統(tǒng)計(jì)發(fā)現(xiàn),當(dāng)橋上的車(chē)流密度達(dá)到180輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)30輛/千米時(shí),車(chē)流速度是
50千米/小時(shí),研究表明:當(dāng)30≤x≤180時(shí),車(chē)流速度v是車(chē)流密度的一次函數(shù);
(1)根據(jù)題意,當(dāng)0≤x≤180時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車(chē)流速度x多大時(shí),車(chē)流量g(x)=x•v(x)可以達(dá)到最大?并求出最大值.(注:車(chē)流量指單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))

查看答案和解析>>

同步練習(xí)冊(cè)答案