【題目】設(shè)點(diǎn)為坐標(biāo)原點(diǎn),橢圓:的右頂點(diǎn)為,上頂點(diǎn)為,過點(diǎn)且斜率為的直線與直線相交于點(diǎn),且.
(1)求橢圓的離心率;
(2)是圓:的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.
【答案】(1) .
(2).
【解析】分析:(1)運(yùn)用向量的坐標(biāo)運(yùn)算,可得M的坐標(biāo),進(jìn)而得到直線OM的斜率,進(jìn)而得證;
(2)由(1)知,橢圓方程設(shè)為,設(shè)PQ的方程,與橢圓聯(lián)立,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,以及弦長公式,解方程即可得到a,b的值,進(jìn)而得到橢圓方程.
詳解:(1)∵,,,所以.
∴,解得,
于是,∴橢圓的離心率為.
(2)由(1)知,∴橢圓的方程為即①
依題意,圓心是線段的中點(diǎn),且.
由對稱性可知,與軸不垂直,設(shè)其直線方程為,代入①得:
,
設(shè),,則,,
由得,解得.
于是.于是
.
解得:,,∴橢圓的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如表1
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,得到表2:
時(shí)間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(1)求z關(guān)于t的線性回歸方程;
(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;
(3)用所求回歸方程預(yù)測到2010年年底,該地儲蓄存款額可達(dá)多少?
附:對于線性回歸方程,
其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每種單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊)數(shù)據(jù):
單價(jià)(元) | 18 | 19 | 20 | 21 | 22 |
銷量(冊) | 61 | 56 | 50 | 48 | 45 |
(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:
(2)預(yù)計(jì)今后的銷售中,銷量(冊)與單價(jià)(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價(jià)應(yīng)定為多少元?
附:,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)人下半身長(肚臍至足底)與全身長的比近似為(,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計(jì)師的你,對TA的著裝建議是( )
A.身材完美,無需改善B.可以戴一頂合適高度的帽子
C.可以穿一雙合適高度的增高鞋D.同時(shí)穿戴同樣高度的增高鞋與帽子
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)寫出函數(shù)的解析式;
(2)若直線與曲線有三個(gè)不同的交點(diǎn),求的取值范圍;
(3)若直線 與曲線在內(nèi)有交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競賽,由成績得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:
(1)這名學(xué)生成績的眾數(shù)與中位數(shù);
(2)這名學(xué)生的平均成績.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會分別選派3,1,2名運(yùn)動員參加某次比賽,甲協(xié)會運(yùn)動員編號分別為,,,乙協(xié)會編號為,丙協(xié)會編號分別為,,若從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運(yùn)動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運(yùn)動員來自同一協(xié)會的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認(rèn)為正確的序號全部寫上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com