已知x1,x2,…,xn都是正數(shù),且x1·x2·…·x2010=1,則(1+x1)(1+x2)…(1+x2010)的最小值為(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、下列命題中:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域?yàn)镽的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個(gè)值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f (x)是定義在R上的奇函數(shù),且f (x+2)也為奇函數(shù),則f (x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{x1,x2,x3,x4}⊆{x|(x-3)•sinπx=1,x>0},則x1+x2+x3+x4的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2,x3,…,xn∈(0,+∞).
若x1+x2=1,則y=
x1+1
+
x2+1
的最大值為
6
;
若x1+x2+x3=1,則y=
x1+1
+
x2+1
+
x3+1
的最大值為
12
;

若x1+x2+x3+x4=1,則y=
x1+1
+
x2+1
+
x3+1
+
x4+1
的最大值為
20
;

若x1+x2+x3+…+xn=1,則y=
x1+1
+
x2+1
+
x3+1
+…+
xn+1
的最大值為
n(n+1)
n(n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1、x2、x3的方差S2=3,則2x1、2x2、2x3方差為( 。
A、12B、9C、3D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2,x3為正實(shí)數(shù),若x1+x2+x3=1,求證:
x
2
2
x1
+
x
2
3
x2
+
x
2
1
x3
≥1

查看答案和解析>>

同步練習(xí)冊答案