分析 (1)設(shè)數(shù)列{bn}的公差為d,則b4=b1+3d=2+3d=11,解得d,即可得出;
(2)利用等差數(shù)列的求和公式可求得ck+ck+1+…+c2k-1=-2k2+52k,從而可得S2k-1=2(ck+ck+1+…+c2k-1)-ck=-4(k-13)2+4×132-50,從而可得答案;
(3)依題意,可寫出所有項數(shù)不超過2m的“對稱數(shù)列”,依次求得每個“對稱數(shù)列”前2008項的和即可.
解答 解:(1)設(shè)數(shù)列{bn}的公差為d,則b4=b1+3d=2+3d=11,解得d=3,
∴數(shù)列{bn}為2,5,8,11,8,5,2.
(2)∵ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數(shù)列,
∴ck+ck+1+…+c2k-1=50k+$\frac{k(k-1)}{2}$•(-4)=-2(k2-k)+50k,
∴S2k-1=c1+c2+…+ck-1+ck+ck+1+…+c2k-1
=2(ck+ck+1+…+c2k-1)-ck
=-4(k2-k)+100k-50
=-4(k-13)2+4×132-50,
∴當(dāng)k=13時,S2k-1取得最大值.S2k-1的最大值為626;
(3)所有可能的“對稱數(shù)列”是:
①1,2,22,…,2m-2,2m-1,2m-2,…,22,2,1;
②1,2,22,…,2m-2,2m-1,2m-1,2m-2,…,22,2,1;
③2m-1,2m-2,…,22,2,1,2,22,…,2m-2,2m-1;
④2m-1,2m-2,…,22,2,1,1,2,22,…,2m-2,2m-1.
對于①,當(dāng)m≥2015時,S2015=1+2+22+…+22014=22015-1;
當(dāng)1500<m≤2014時,S2015=1+2+22+…+2m-2+2m-1+2m-2+…+22m-2016
=2m-1+2m-1-22m-2016=2m+2m-1-22m-2016-1.
對于②,當(dāng)m≥2015時,S2015=22015-1.
當(dāng)1500<m≤2014時,S2015=2m+1-22m-2015-1.
對于③,當(dāng)m≥2015時,S2015=2m-2m-2015.
當(dāng)1500<m≤2014時,S2015=2m+22016-m-3.
對于④,當(dāng)m≥2015時,S2015=2m-2m-2015.
當(dāng)1500<m≤2014時,S2015=2m+22015-m-2.
點評 本題考查數(shù)列的求和,突出考查等差數(shù)列的求和公式,考查抽象思維與邏輯思維、綜合分析與運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | .圖象關(guān)于(π,0)中心對稱 | B. | 圖象關(guān)于直線$x=\frac{π}{2}$對稱 | ||
C. | 在區(qū)間$[-\frac{π}{6},0]$上單調(diào)遞增 | D. | 周期為π的奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{3}{2}$] | B. | [$\frac{3}{2}$,+∞) | C. | [1,$\frac{3}{2}$] | D. | [$\frac{3}{2}$,$\frac{9}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com