【題目】數(shù)列的前項(xiàng)和為,且

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足:,求 的通項(xiàng)公式;

(3)令,求數(shù)列的前項(xiàng)和.

【答案】(1) .

(2)

(3) 故數(shù)列的前項(xiàng)和為

【解析】分析:(1)知道,求數(shù)列的通項(xiàng)公式,應(yīng)用來(lái)解。由,兩式相減得。根據(jù),求得 。滿足上式。進(jìn)而可得。(2)由可得。兩式相減可得,變形可得,進(jìn)而可得 (3)由以可得。

根據(jù)數(shù)列的通項(xiàng)公式得特點(diǎn),可用分組求和得數(shù)列的前項(xiàng)和為,對(duì)于求,是等差數(shù)列和等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積的和,故可用錯(cuò)位相減法求和得。對(duì)于求,可用等差數(shù)列的求和公式。故數(shù)列的前項(xiàng)和為

詳解:(1)由,

兩式相減得

對(duì)于,當(dāng)時(shí), 。滿足上式。

所以

(2),

,

兩式相減得

所以

于是:

(3)

兩式相減得

,

故數(shù)列的前項(xiàng)和為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在女子十米跳臺(tái)比賽中,已知甲、乙兩名選手發(fā)揮正常的概率分別為0.9,0.85,求

(1)甲、乙兩名選手發(fā)揮均正常的概率;

(2)甲、乙兩名選手至多有一名發(fā)揮正常的概率;

(3)甲、乙兩名選手均出現(xiàn)失誤的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)的和為,公差,,成等比數(shù)列;數(shù)列滿足對(duì)于任意的,等式都成立.

(1)求數(shù)列的通項(xiàng)公式;

(2)證明:數(shù)列是等比數(shù)列;

(3)若數(shù)列滿足,試問(wèn)是否存在正整數(shù),(其中),使,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為a,EF、GH分別為AB、BCCD、DA的中點(diǎn).若沿EFFG、GHHE將四角折起,試問(wèn)能折成一個(gè)四棱錐嗎?為什么?你從中能得到什么結(jié)論?對(duì)于圓錐有什么類似的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在軸上且通過(guò)點(diǎn)的圓與直線相切.

(1)求圓的方程;

(2)已知直線經(jīng)過(guò)點(diǎn),并且被圓C截得的弦長(zhǎng)為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=,則下列結(jié)論中錯(cuò)誤的是

A.ACBE B.EF平面ABCD

C.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

(Ⅰ)當(dāng)時(shí),解關(guān)于x的不等式

(Ⅱ)若不等式的解集為D,且,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)兩點(diǎn)A(3,3),B(4,2),且圓心C在直線上。

(Ⅰ)求圓C的方程;

(Ⅱ)直線過(guò)點(diǎn)D(2,4),且與圓C相切,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, 底面分別是的中點(diǎn), ,且.

(1)求證: 平面;

(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);

若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案