現(xiàn)有某種細(xì)胞100個,其中有約占總數(shù)
1
2
的細(xì)胞每小時分裂一次,即由1個細(xì)胞分裂成2個細(xì)胞,按這種規(guī)律發(fā)展下去,要使細(xì)胞總數(shù)超過1010個,需至少經(jīng)過( 。
A、42小時B、46小時
C、50小時D、52小時
考點:指數(shù)函數(shù)的定義、解析式、定義域和值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分裂的規(guī)律得到細(xì)胞總數(shù)y與時間x(小時)之間的函數(shù)關(guān)系為:y=100×(
3
2
)
x
 x∈N*,再建立不等式求解.
解答:解:根據(jù)分裂的規(guī)律得到細(xì)胞總數(shù)y與時間x(小時)之間的函數(shù)關(guān)系為:y=100×(
3
2
)
x
 x∈N*
由y=100×(
3
2
)
x
>1010,解得(
3
2
)
x
>108,即 xlg
3
2
>8,即 x>
8
lg3-lg2
≈45.45.
∴x>45.45,
故經(jīng)過46小時,細(xì)胞總數(shù)超過1010個.
點評:此題考查了函數(shù)關(guān)系的確定,以及指數(shù)函數(shù)的實際應(yīng)用,其中根據(jù)題意得出y=100×(
3
2
)
x
 x∈N*,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有如下幾種說法:
①若直線l1,l2的斜率存在且相等,則l1∥l2;
②若直線l1⊥l2,則它們的斜率之積互為負(fù)倒數(shù);
③若兩條直線的傾斜角的正弦值相等,則這兩條直線平行.
在以上三種說法中,正確的個數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax(0<a<1)在區(qū)間[0,2]上的最大值比最小值大
3
4
,則a的值為(  )
A、
1
2
B、
7
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

推理“①三角函數(shù)都是周期函數(shù);②正切函數(shù)是三角函數(shù);③正切函數(shù)是周期函數(shù)”中的小前提是( 。
A、①B、②C、③D、①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯誤的是( 。
A、正棱錐的所有側(cè)棱長相等
B、圓柱的母線垂直于底面
C、直棱柱的側(cè)面都是全等的矩形
D、用經(jīng)過旋轉(zhuǎn)軸的平面截圓錐,所得的截面一定是全等的等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log37,b=23.3,c=0.81.1,則( 。
A、b<a<c
B、c<a<b
C、c<b<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log34,b=log54,c=3 
1
2
,則( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x+1|+|2-x|的最小值是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,若a+1,a+2,a+6依次構(gòu)成等比數(shù)列,則此等比數(shù)列的公比為( 。
A、4
B、2
C、1
D、-
2
3

查看答案和解析>>

同步練習(xí)冊答案