數(shù)列{an}中,an=3-2n,從第一項(xiàng)起各項(xiàng)依次為1,x,-3,y,…,那么x-y=( 。
A.2B.-2C.4D.-4
∵an=3-2n,∴數(shù)列{an}是公差為-2的等差數(shù)列,
則x和y是等差數(shù)列{an}的第二、第四項(xiàng),再由an=3-2n,
可得x=-1,y=-5,故有 x-y=4,
故選 C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an},sn為其前n項(xiàng)和,且s10=S20,則S30=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=(
1
3
)x
-log2x,正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足f(a)f(b)f(c)<0.若實(shí)數(shù)d是方程f(x)=0的一個(gè)解,那么下列四個(gè)判斷:①d<a;②d<b;③d<c;④d>c中有可能成立的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知實(shí)數(shù)a,b,c成等差數(shù)列,a+1,b+1,c+4成等比數(shù)列,且a+b+c=15,則a,b,c分別為(  )
A.2,5,8B.11,5,-1
C.2,5,8或11,5,-1D.3,6,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=px2+qx,其中p>0,p+q>1,對(duì)于數(shù)列{an},設(shè)它的前n項(xiàng)和為Sn,且滿足Sn=f(n)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式,并證明an+1>an>1(n∈N*);
(2)求證:點(diǎn)M1(1,
S1
1
),M2(2,
S2
2
),M3(3,
S3
3
),…,Mn(n,
Sn
n
)
在同一直線l1上;
(3)若過(guò)點(diǎn)N1(1,a1),N2(2,a2)作直線l2,設(shè)l2與l1的夾角為θ,求tanθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)sn為等差數(shù)列{an}的前n項(xiàng)和,S8=4a3,a7=-2,則a9=(  )
A.-6B.-4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù),{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則ba1+ba2+ba3+…+ba6等于( 。
A.78B.84C.124D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列中,(c為非零常數(shù))且前n項(xiàng)和,則實(shí)數(shù)k等于(    ).
A.1B.1C.0D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案